PLC技术在电机控制中的应用概述 (plc技术在机械电气控制装置中的应用)

PLC技术在电机控制中的应用概述 PLC技术在电机控制中的应用概述

一、引言

随着工业自动化水平的不断提高,PLC(可编程逻辑控制器)技术在机械电气控制装置中的应用越来越广泛。
特别是在电机控制领域,PLC技术以其独特的优势,如灵活性高、控制精度高、响应速度快等,逐渐成为现代电机控制的核心技术之一。
本文将对PLC技术在电机控制中的应用进行概述,探讨其工作原理、优势、具体应用以及未来发展趋势。

二、PLC技术的基本原理

PLC,即可编程逻辑控制器,是一种数字计算机控制系统。
它采用可编程的存储器,用于在其内部存储执行逻辑运算、顺序控制、定时、计数和算术运算等操作的指令,并通过数字式或模拟式的输入/输出接口控制各种类型的机械或生产过程。
PLC技术的基本原理包括中央处理单元(CPU)、存储器、输入输出接口以及电源等部分。
其中,CPU是PLC的核心部分,负责执行存储在用户程序中的指令。

三、PLC技术在电机控制中的优势

1. 灵活性高:PLC技术可以通过编程实现多种复杂的控制逻辑,适应于不同类型的电机控制需求。
2. 控制精度高:PLC技术具有精确的定时和计数功能,可以实现电机的精确控制,提高生产效率和产品质量。
3. 响应速度快:PLC技术采用高速处理器,具有快速的响应速度,能够满足高速电机控制的需求。
4. 可靠性高:PLC技术采用模块化设计,具有良好的抗干扰能力和稳定性,可保证电机控制的可靠性。
5. 易于维护:PLC技术具有自诊断功能,可以方便地进行故障检测和排查,降低维护成本。

四、PLC技术在电机控制中的具体应用

1. 电机启动与停止控制:PLC技术可以根据生产需求,实现电机的自动启动与停止控制,提高生产自动化程度。
2. 电机转速控制:通过PLC技术,可以实现电机的精确转速控制,满足生产工艺要求。
3. 电机运行监测:PLC技术可以实时监测电机的运行状态,包括温度、电流、电压等参数,确保电机安全运行。
4. 电机故障诊断:通过PLC技术的自诊断功能,可以检测电机的故障并提示报警,方便维护人员及时排查故障。
5. 多电机协调控制:在大型生产线中,需要多台电机协同工作。PLC技术可以实现多电机的协调控制,确保生产线的稳定运行。

五、PLC技术在电机控制中的发展趋势

随着工业自动化技术的不断发展,PLC技术在电机控制中的应用将越来越广泛。未来,PLC技术将朝着以下几个方向发展:

1. 智能化:随着人工智能技术的不断发展,未来的PLC技术将具备更多的智能功能,如自学习、自适应等,提高电机控制的智能化水平。
2. 网络化:随着物联网、工业互联网等技术的普及,PLC技术将实现更加便捷的网络通信,方便设备的远程监控和管理。
3. 模块化:为了满足不同电机的控制需求,未来的PLC技术将更加注重模块化设计,方便用户根据需求选择合适的模块进行组合。
4. 高性能:随着处理器技术的发展,未来的PLC技术将具有更高的性能,包括更快的处理速度、更高的精度等,满足高性能电机控制的需求。

六、结论

PLC技术在电机控制中具有重要的应用价值。
其灵活性高、控制精度高、响应速度快等优势,使得它在电机控制领域具有广泛的应用前景。
随着技术的不断发展,PLC技术在电机控制中的应用将越来越广泛,为工业自动化水平的提高发挥重要作用。


简述PLC应用及使用中应注意的问题?

下面是中达咨询给大家带来关于PLC应用及使用中应注意的问题,以供参考。 一、简述多年来,可编程控制器(以下简称PLC)从其产生到现在,实现了接线逻辑到存储逻辑的飞跃;其功能从弱到强,实现了逻辑控制到数字控制的进步;其应用领域从小到大,实现了单体设备简单控制到胜任运动控制、过程控制及集散控制等各种任务的跨越。 今天的PLC在处理模拟量、数字运算、人机接口和网络的各方面能力都已大幅提高,成为工业控制领域的主流控制设备,在各行各业发挥着越来越大的作用。 二、PLC的应用领域目前,PLC在国内外已广泛应用于钢铁、石油、化工、电力、建材、机械制造、汽车、轻纺、交通运输、环保及文化娱乐等各个行业,使用情况主要分为如下几类:1.开关量逻辑控制取代传统的继电器电路,实现逻辑控制、顺序控制,既可用于单台设备的控制,也可用于多机群控及自动化流水线。 如注塑机、印刷机、订书机械、组合机床、磨床、包装生产线、电镀流水线等。 2.工业过程控制在工业生产过程当中,存在一些如温度、压力、流量、液位和速度等连续变化的量(即模拟量),PLC采用相应的A/D和D/A转换模块及各种各样的控制算法程序来处理模拟量,完成闭环控制。 PID调节是一般闭环控制系统中用得较多的一种调节方法。 过程控制在冶金、化工、热处理、锅炉控制等场合有非常广泛的应用。 3.运动控制PLC可以用于圆周运动或直线运动的控制。 一般使用专用的运动控制模块,如可驱动步进电机或伺服电机的单轴或多轴位置控制模块,广泛用于各种机械、机床、机器人、电梯等场合。 4.数据处理PLC具有数学运算(含矩阵运算、函数运算、逻辑运算)、数据传送、数据转换、排序、查表、位操作等功能,可以完成数据的采集、分析及处理。 数据处理一般用于如造纸、冶金、食品工业中的一些大型控制系统。 5.通信及联网PLC通信含PLC间的通信及PLC与其它智能设备间的通信。 随着工厂自动化网络的发展,现在的PLC都具有通信接口,通信非常方便。 三、PLC的应用特点1.可靠性高,抗干扰能力强高可靠性是电气控制设备的关键性能。 PLC由于采用现代大规模集成电路技术,采用严格的生产工艺制造,内部电路采取了先进的抗干扰技术,具有很高的可靠性。 使用PLC构成控制系统,和同等规模的继电接触器系统相比,电气接线及开关接点已减少到数百甚至数千分之一,故障也就大大降低。 此外,PLC带有硬件故障自我检测功能,出现故障时可及时发出警报信息。 在应用软件中,应用者还可以编入外围器件的故障自诊断程序,使系统中除PLC以外的电路及设备也获得故障自诊断保护。 这样,整个系统将极高的可靠性。 2.配套齐全,功能完善,适用性强PLC发展到今天,已经形成了各种规模的系列化产品,可以用于各种规模的工业控制场合。 除了逻辑处理功能以外,PLC大多具有完善的数据运算能力,可用于各种数字控制领域。 多种多样的功能单元大量涌现,使PLC渗透到了位置控制、温度控制、CNC等各种工业控制中。 加上PLC通信能力的增强及人机界面技术的发展,使用PLC组成各种控制系统变得非常容易。 3.易学易用,深受工程技术人员欢迎PLC是面向工矿企业的工控设备。 它接口容易,编程语言易于为工程技术人员接受。 梯形图语言的图形符号与表达方式和继电器电路图相当接近,为不熟悉电子电路、不懂计算机原理和汇编语言的人从事工业控制打开了方便之门。 4.系统的设计,工作量小,维护方便,容易改造PLC用存储逻辑代替接线逻辑,大大减少了控制设备外部的接线,使控制系统设计及建造的周期大为缩短,同时日常维护也变得容易起来,更重要的是使同一设备经过改变程序而改变生产过程成为可能。 这特别适合多品种、小批量的生产场合。 (2)安装与布线● 动力线、控制线以及PLC的电源线和I/O线应分别配线,隔离变压器与PLC和I/O之间应采用双胶线连接。 将PLC的IO线和大功率线分开走线,如必须在同一线槽内,分开捆扎交流线、直流线,若条件允许,分槽走线最好,这不仅能使其有尽可能大的空间距离,并能将干扰降到最低限度。 ● PLC应远离强干扰源如电焊机、大功率硅整流装置和大型动力设备,不能与高压电器安装在同一个开关柜内。 在柜内PLC应远离动力线(二者之间距离应大于200mm)。 与PLC装在同一个柜子内的电感性负载,如功率较大的继电器、接触器的线圈,应并联RC消弧电路。 ● PLC的输入与输出最好分开走线,开关量与模拟量也要分开敷设。 模拟量信号的传送应采用屏蔽线,屏蔽层应一端或两端接地,接地电阻应小于屏蔽层电阻的1/10.● 交流输出线和直流输出线不要用同一根电缆,输出线应尽量远离高压线和动力线,避免并行。 (3)I/O端的接线输入接线● 输入接线一般不要太长。 但如果环境干扰较小,电压降不大时,输入接线可适当长些。 ● 输入/输出线不能用同一根电缆,输入/输出线要分开。 ● 尽可能采用常开触点形式连接到输入端,使编制的梯形图与继电器原理图一致,便于阅读。 输出连接● 输出端接线分为独立输出和公共输出。 在不同组中,可采用不同类型和电压等级的输出电压。 但在同一组中的输出只能用同一类型、同一电压等级的电源。 ● 由于PLC的输出元件被封装在印制电路板上,并且连接至端子板,若将连接输出元件的负载短路,将烧毁印制电路板。 ● 采用继电器输出时,所承受的电感性负载的大小,会影响到继电器的使用寿命,因此,使用电感性负载时应合理选择,或加隔离继电器。 ● PLC的输出负载可能产生干扰,因此要采取措施加以控制,如直流输出的续流管保护,交流输出的阻容吸收电路,晶体管及双向晶闸管输出的旁路电阻保护。 四、PLC应用中需要注意的问题PLC是一种用于工业生产自动化控制的设备,一般不需要采取什么措施,就可以直接在工业环境中使用。 然而,尽管有如上所述的可靠性较高,抗干扰能力较强,但当生产环境过于恶劣,电磁干扰特别强烈,或安装使用不当,就可能造成程序错误或运算错误,从而产生误输入并引起误输出,这将会造成设备的失控和误动作,从而不能保证PLC的正常运行,要提高PLC控制系统可靠性,一方面要求PLC生产厂家提高设备的抗干扰能力;另一方面,要求设计、安装和使用维护中引起高度重视,多方配合才能完善解决问题,有效地增强系统的抗干扰性能。 因此在使用中应注意以下问题:1.工作环境(1)温度PLC要求环境温度在0~55oC,安装时不能放在发热量大的元件下面,四周通风散热的空间应足够大。 (2)湿度为了保证PLC的绝缘性能,空气的相对湿度应小于85%(无凝露)。 (3)震动应使PLC远离强烈的震动源,防止振动频率为10~55Hz的频繁或连续振动。 当使用环境不可避免震动时,必须采取减震措施,如采用减震胶等。 (4)空气避免有腐蚀和易燃的气体,例如氯化氢、硫化氢等。 对于空气中有较多粉尘或腐蚀性气体的环境,可将PLC安装在封闭性较好的控制室或控制柜中。 (5)电源PLC对于电源线带来的干扰具有一定的抵制能力。 在可靠性要求很高或电源干扰特别严重的环境中,可以安装一台带屏蔽层的隔离变压器,以减少设备与地之间的干扰。 一般PLC都有直流24V输出提供给输入端,当输入端使用外接直流电源时,应选用直流稳压电源。 因为普通的整流滤波电源,由于纹波的影响,容易使PLC接收到错误信息。 2.控制系统中干扰及其来源现场电磁干扰是PLC控制系统中最常见也是最易影响系统可靠性的因素之一,所谓治标先治本,找出问题所在,才能提出解决问题的办法。 因此必须知道现场干扰的源头。 (1)干扰源及一般分类影响PLC控制系统的干扰源,大都产生在电流或电压剧烈变化的部位,其原因是电流改变产生磁场,对设备产生电磁辐射;磁场改变产生电流,电磁高速产生电磁波。 通常电磁干扰按干扰模式不同,分为共模干扰和差模干扰。 共模干扰是信号对地的电位差,主要由电网串入、地电位差及空间电磁辐射在信号线上感应的共态(同方向)电压叠加所形成。 共模电压通过不对称电路可转换成差模电压,直接影响测控信号,造成元器件损坏(这就是一些系统I/O模件损坏率较高的主要原因),这种共模干扰可为直流,亦可为交流。 差模干扰是指作用于信号两极间的干扰电压,主要由空间电磁场在信号间耦合感应及由不平衡电路转换共模干扰所形成的电压,这种干扰叠加在信号上,直接影响测量与控制精度。 (2)PLC系统中干扰的主要来源及途径强电干扰PLC系统的正常供电电源均由电网供电。 由于电网覆盖范围广,它将受到所有空间电磁干扰而在线路上感应电压。 尤其是电网内部的变化,刀开关操作浪涌、大型电力设备起停、交直流传动装置引起的谐波、电网短路暂态冲击等,都通过输电线路传到电源原边。 柜内干扰控制柜内的高压电器,大的电感性负载,混乱的布线都容易对PLC造成一定程度的干扰。 来自信号线引入的干扰与PLC控制系统连接的各类信号传输线,除了传输有效的各类信息之外,总会有外部干扰信号侵入。 此干扰主要有两种途径:一是通过变送器供电电源或共用信号仪表的供电电源串入的电网干扰,这往往被忽视;二是信号线受空间电磁辐射感应的干扰,即信号线上的外部感应干扰,这是很严重的。 由信号引入干扰会引起I/O信号工作异常和测量精度大大降低,严重时将引起元器件损伤。 来自接地系统混乱时的干扰接地是提高电子设备电磁兼容性(EMC)的有效手段之一。 正确的接地,既能抑制电磁干扰的影响,又能抑制设备向外发出干扰;而错误的接地,反而会引入严重的干扰信号,使PLC系统将无法正常工作。 来自PLC系统内部的干扰主要由系统内部元器件及电路间的相互电磁辐射产生,如逻辑电路相互辐射及其对模拟电路的影响,模拟地与逻辑地的相互影响及元器件间的相互不匹配使用等。 变频器干扰一是变频器启动及运行过程中产生谐波对电网产生传导干扰,引起电网电压畸变,影响电网的供电质量;二是变频器的输出会产生较强的电磁辐射干扰,影响周边设备的正常工作。 3.主要抗干扰措施(1)电源的合理处理,抑制电网引入的干扰对于电源引入的电网干扰可以安装一台带屏蔽层的变比为1:1的隔离变压器,以减少设备与地之间的干扰,还可以在电源输入端串接LC滤波电路。 (4)正确选择接地点,完善接地系统良好的接地是保证PLC可靠工作的重要条件,可以避免偶然发生的电压冲击危害。 接地的目的通常有两个,其一为了安全,其二是为了抑制干扰。 完善的接地系统是PLC控制系统抗电磁干扰的重要措施之一。 PLC控制系统的地线包括系统地、屏蔽地、交流地和保护地等。 接地系统混乱对PLC系统的干扰主要是各个接地点电位分布不均,不同接地点间存在地电位差,引起地环路电流,影响系统正常工作。 例如电缆屏蔽层必须一点接地,如果电缆屏蔽层两端A、B都接地,就存在地电位差,有电流流过屏蔽层,当发生异常状态如雷击时,地线电流将更大。 此外,屏蔽层、接地线和大地有可能构成闭合环路,在变化磁场的作用下,屏蔽层内又会出现感应电流,通过屏蔽层与芯线之间的耦合,干扰信号回路。 若系统地与其它接地处理混乱,所产生的地环流就可能在地线上产生不等电位分布,影响PLC内逻辑电路和模拟电路的正常工作。 PLC工作的逻辑电压干扰容限较低,逻辑地电位的分布干扰容易影响PLC的逻辑运算和数据存贮,造成数据混乱、程序跑飞或死机。 模拟地电位的分布将导致测量精度下降,引起对信号测控的严重失真和误动作。 ● 安全地或电源接地将电源线接地端和柜体连线接地为安全接地。 如电源漏电或柜体带电,可从安全接地导入地下,不会对人造成伤害。 ● 系统接地PLC控制器为了与所控的各个设备同电位而接地,叫系统接地。 接地电阻值不得大于4Ω,一般需将PLC设备系统地和控制柜内开关电源负端接在一起,作为控制系统地。 ● 信号与屏蔽接地一般要求信号线必须要有唯一的参考地,屏蔽电缆遇到有可能产生传导干扰的场合,也要在就地或者控制室唯一接地,防止形成“地环路”。 信号源接地时,屏蔽层应在信号侧接地;不接地时,应在PLC侧接地;信号线中间有接头时,屏蔽层应牢固连接并进行绝缘处理,一定要避免多点接地;多个测点信号的屏蔽双绞线与多芯对绞总屏蔽电缆连接时,各屏蔽层应相互连接好,并经绝缘处理,选择适当的接地处单点接点。 5)对变频器干扰的抑制变频器的干扰处理一般有下面几种方式:加隔离变压器,主要是针对来自电源的传导干扰,可以将绝大部分的传导干扰阻隔在隔离变压器之前。 使用滤波器,滤波器具有较强的抗干扰能力,还具有防止将设备本身的干扰传导给电源,有些还兼有尖峰电压吸收功能。 使用输出电抗器,在变频器到电动机之间增加交流电抗器主要是减少变频器输出在能量传输过程中线路产生电磁辐射,影响其它设备正常工作。 五、结束语PLC控制系统中的干扰是一个十分复杂的问题,因此在抗干扰设计中应综合考虑各方面的因素,合理有效地抑制抗干扰,才能够使PLC控制系统正常工作。 随着PLC应用领域的不断拓宽,如何高效可靠的使用PLC也成为其发展的重要因素。 21世纪,PLC会有更大的发展,产品的品种会更丰富、规格更齐全,通过完美的人机界面、完备的通信设备会更好地适应各种工业控制场合的需求,PLC作为自动化控制网络和国际通用网络的重要组成部分,将在工业控制领域发挥越来越大的作用。 更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:

PLC对电气自动化控制的应用论文

第一篇:PLC对电气自动化控制的应用论文

引言

随着高新技术的发展,自动化系统逐渐应用到工业生产领域。 PLC技术的应用,不仅解决了传统电气控制系统内部结构复杂,可靠性低,能耗高等问题,而且节省了大量的人力物力,保证了控制系统的工作质量。 推动了我国工业转型和健康发展,受到越来越多专业人士的关注和重视。

1、PLC概述

(1)PLC的概念。 在国际电工委员会(IEC)的标准中,可编程逻辑控制器(ProgrammableLogicController,简称PLC)的定义为:可编程逻辑控制器是一种数字运算操作的电子系统,专为在工业环境应用而设计。 在系统运行过程中按照用户的实际需要在系统软件支持下,保证系统功能的正常发挥,其工作原理是按照“串行”的工作方式,扫描各个输入点数据,并发送给输出点相应的信号和数据,中央处理器会直接显示在执行的程序命令,一直到整个程序全部运行结束。 结束后会周而复始的重复这一过程。 PLC硬件构成一般分为箱体式和模组式两种。 但它们的组成是相同的,对箱体式PLC,有一块CPU板、I/O板、显示面板、内存块、电源等,当然按CPU性能分成若干型号,并按I/O点数又有若干规格。 对模组式PLC,有CPU模组、I/O模组、内存、电源模组、底板或机架。 无论哪种结构类型的PLC,都属于总线式开放型结构,其I/O能力可按用户需要进行扩展与组合。 电源对于PLC的系统运行有重大意义,一旦电源出现了问题,PLC将无法正常运转。 所以PLC的生产厂家非常重视电源的质量,电源自身的特性决定了所提供的电压只能在小范围内波动,并且需要注意电源在运行过程中要和交流电网形成协调配合,这样才能保证持续供电[1]。 CPU在PLC系统运行中的作用也至关重要,如果PLC是一个人,那么CPU就是这个人的大脑,没有大脑就无法处理信息和存储数据,就无法工作。 在系统运行中它最大的作用就是判定PLC控制系统的状态,之后将存储好的数据发送到对应的输出设备当中,这样可以确保PLC始终处于良好的运行状态当中。 (2)PLC的特点。 首先,PLC的性价比高,这主要体现在功能上,有些功能只有通过PLC系统才能实现,因为系统中有许多编程元件,具有非常强大的控制功能,可以有效的调整和控制整个电气自动化系统,并且进行集中化处理,提升工作效率。 其次,PLC的操作便捷,不需要有非常专业的计算机知识,程序简单,易于操作是PLC最显著的特点。 只要懂得编程语言即可,也不需要较长的系统开发周期,这就减少了操作量,提升了工作效率和工作质量。 最后就是对硬件条件有很强的适应能力。 PLC有完善的自我检测功能,故障率低,即使发生故障,检修和维护也非常简单,可以在短时间内处理好,保证了系统的稳定[2]。

2、PLC在电气自动化控制中的实践应用

随着PLC技术的更新和完善,此技术已经广泛应用于电气化控制的实践中。 其中有:顺序控制、开关量控制和闭环控制三个方面。 (1)顺序控制。 随着环境污染的加剧,国家越来越重视节能减排和工业可持续发展,在工业生产中降低能耗增加效率是我们一直在追求的目标。 PLC技术的应用,实现了对单独工艺的流程和对全长生产工作的协调与控制。 例如在煤炭系统中,一个好的煤炭自控系统设计可以使生产更加平稳的进行,同时使用过程中显著提高生产效率。 煤炭控制系统采用的是分层式网络结构,这种结构可以有效的监督和控制相关设备,现在煤炭系统基本实现了PLC控制,提高了生产稳定性,减少了工作人员工作量,减少人力和物力的资源浪费[3]。 (2)开关量控制。 在应用PLC系统的过程中,就是把虚拟继电器当做机械继电器,所以在运行过程中不考虑反应时间,也不需要考虑返回量,在这样的情况下,系统运行过程中开关量控制方面做得很好。 由于PLC不需要大量实物元件和软继电器,提高其稳定性。 没有多余元件干扰,维修更简便,功能仍全面。 在电气自动化工作中,这项技术应用到了自动切换系统,显著提升了运行速度。 同时,PLC技术可以使系统备用电源自动投入装置,在火力发电系统中增强了系统的可靠性,被广泛应用于电业局生产中。 PLC控制系统不仅可以减少辅助开关数目,也可以集中显示和控制多台断路器的信号,这样系统就有了逻辑判断能力,提升了系统的抗干扰力,实现了系统高效可靠运行。 (3)闭环控制。 电气自动化系统有多种电机启动方式,如现场控制手动启用、自动启用,机旁屏手动启用等。 与其他控制手段先比,闭环控制保持了系统设备的相对独立性,能够保证系统设备在没有其他控制量来源的时候,能够维持系统社会的正常运行.闭环控制是基于系统人机交互实现的,以机旁屏手动控制为例,在系统设备运转的过程中,系统各项参数会以数据的形式出现在机旁屏上,而操作人员可以通过这些数据对系统设备运行的状态进行及时的了解,并基于系统运行的需要,对相应的运行参数进行调整,进而保证系统设备生产活动的顺利进行。

3、结论

PLC系统在应用的过程中能够体现出强大的功能,不仅克服了传统系统的缺点,更提升了工作效率。 随着科学技术的进一步发展,PLC系统会更加优化和完善,应用范围会更加广泛,应用程度会更加深入。

第二篇:PLC对电气自动化控制的应用论文

1、PLC实践应用主要优点

在PLC系统应用实践中,我们对其主要技术应用内容进行了技术分析,发现这一技术在实践应用中具有以下的优点。 一是自动控制过程反应较快。 在PLC系统应用实践中我们发现,技术人员使用了新型的自动化管理辅助继电器完成控制工作。 较之传统的机械式继电器,这种继电控制技术在应用中使用了内部逻辑关系进行控制处理。 所以在实际控制过程中,其控制的节点变位时间几乎为零,极大的提高了自动控制的反应速度。 二是控制过程的可靠性高。 在PLC系统控制技术应用实践中我们发现,这一控制系统在实际技术应用中具有良好的抗干扰能力。 特别是在使用情况较为复杂的工业生产环境中,PLC系统的较之传统控制系统而言,其抗干扰高特点保证了生产系统控制可靠性的提高。 三是控制操作方法简单。 在PLC系统控制实际过程中,控制指令是通过较为简单控制过程完成的。 这些较为直观地操作方式,即使是初学者也可以较快的掌握。 这种操作简单地特点,对于控制管理的开展具有极大的实际作用。

2、PLC系统控制主要应用探析

2.1完成对电气系统的顺序整体控制

在实际的电气系统控制过程中,利用控制技术完成系统工作顺序控制,是控制系统的重要内容。 这一技术控制系统在实际控制过程中可很好的提高控制系统的工作质量与效率。 在PLC控制系统实践应用中,我们发现这一控制系统在顺序控制管理中具有良好的工作方式,所以在实践应用中,可以很好地代替传统的继电控制系统,完成工业生产的电气控制工作。 在实际应用中,我们对PLC控制系统的顺序开关模式进行了实践考察,发现其主要功能包括了以下内容。 一是在当前的PLC控制系统实际应用中,顺序控制系统不仅可以完成单独控制过程,还可以利用信息模块与通信总线连接的方式实现整体系统,乃至生产车间的整体控制。 二是在PLC控制系统中,控制主要过程是通过集控室管理完成的。 这种独立集中地控制管理模式可以很好地保证自动化管理效率的提升。 正是因为PLC控制系统在电气顺序控制过程中具有以上优势,所以其在自动化控制研究中的作用得到了极大的提升。

2.2完成对电气控制系统的稳定化控制

在传统的电气系统的控制过程中,电气系统的控制过程主要是通过电磁型继电器控制系统完成的。 在实际工作中,由于这一系统主要采用电磁元件进行控制。 但是在实际控制过程中,这种控制系统的可靠性性较低,并存在接线复杂、维修困难等诸多问题,影响了其使用质量。 而在PLC控制系统的实际应用中,因为其在实际运行中采用了软继电器进行控制操作,起高了其控制的可靠性。 同时在操作过程中,工作人员可以利用简单的操作过程完成控制工作。 正是因为PLC控制系统具有以上的优势,保证了其在电气控制系统的开关量控制,可以发挥出良好的作用。 特别是其具有的稳定性强的特点,在实际电气控制过程中可以发挥出以下作用。 一是稳定性较强的特点,可以保证电气控制过程的质量与效率的提升,确保生产产量的提升。 二是稳定性强的控制过程,可以避免安全事故的产生。 在实际的电气控制过程中,良好的开关量控制可以很好地保证系统稳定运行,是安全生产的必要技术支持手段。 在实践过程中我们发现,PLC系统良好的稳定性特点保证了系统开关量控制的稳定,是自动控制系统的重要技术支持手段。

2.3完成对电气控制系统的自动化管理控制

在实际的电气控制控制管理中,PLC系统的自动管理控制状态在系统控制运行发挥着重要作用。 在实际中我们发现PLC自动控制系统在实际控制过程中,包括了以下工作。 一是快速反应的自动化控制处理。 与传统的继电器系统相比较,PLC控制系统在实践中因为其对控制反映的时间几乎为零,这就使得其控制过程中的整体反应速度高于传统的控制方法。 这种高速反应的控制过程是实现自动化控制的重要保证。 二是稳定的连锁化控制过程。 在电气控制过程中,自动化处理中连锁控制中时间差的控制极为重要。 在PLC控制系统中,由于其控制的稳定性较高,保证了连锁控制的顺利完成。

3、技术应用未来发展趋势研究

在PLC控制系统的技术发展中,我们结合系统技术应用与生产实际情况,开展了技术应用发展未来趋势的研究。 在研究中我们发现,PLC控制系统技术的未来发展趋势主要包括了以下内容。

3.1提高系统整体的抗干扰性

在PLC控制系统实际应用中,其良好的.抗干扰性特点为自动控制的完成提供了保障。 所以在PLC控制技术的研究中,我们必须加强对系统整体抗干扰性的技术研究工作,特别是在高温高湿等较为恶劣的生产环境,以及生产过程中电磁干扰严重的生产环境中,提高系统整体的抗干扰性,对于技术的进一步应用具有极大的作用。

3.2系统控制管理的网络化、数字化趋势

随着PLC控制系统的应用的推广,如何更好地提高其自动化过程就成为了我们研究的重要内容。 在这一过程中,控制系统的网络化、数字化的应用就成为了我们研究的重要内容。 在实际研究过程中,数字化、智能化控制技术在PLC控制技术应用得到了广泛应用。

4、结束语

随着现代化工业生产中自动化控制技术的不断发展,传统的继电器控制系统因其技术中的缺陷影响了自动化控制技术的发展。 正因如此,我们在自动化控制技术研究中广泛采用了PLC控制系统技术。 在实践应用中,这一技术因其稳定性好、控制简便等优势,得到了广泛应用。 我们做好这一控制系统的技术发展研究,可以为工业生产技术的发展提供更好的理论支持。

第三篇:PLC对电气自动化控制的应用论文

随着时代发展,工业已经逐步实现了电气自动化,这种技术的应用极大的推动了工业的发展。 近年来,PLC作为一种新型的、高科技手段被广泛的应用到工业电气自动化当中去,以期能够进一步提高工业生产的效率,从而促进整个工业的发展。

1、工业电气自动化

工业电气自动化指的是在工业企业当中的电气自动化,其中涉及到技术方面的主要包括电子、电机电器、信息、网络和机电一体化等这几种技术,随着互联网和计算机的迅速兴起,电气自动化也适时的得到了广泛的提高[1]。 目前,电气自动化已经逐步的完成了信息化与开放化,在很大程度上促进了工业的发展,与此同时也就带动了整个社会经济的发展。

2、PLC概述、工作原理及其特点

PLC,即可编程控制器,这是专门为了对工业进行控制而设计的一种自动控制装置,用于控制工业生产当中的电气设备。 可编程控制器之所以能够使得操作简便,是因为它融合了电气控制技术、通信技术以及计算机技术等多种技术。 PLC工作的原理,主要根据工作的阶段进行分析,在不同的阶段的工作原理也不尽相同。 输入采样阶段时,PLC主要是进行数据的采样,通常用到的方式是扫描,之后对采集到的数据进行读取、存储并且输入到单元格中[2]。 在这个阶段中要注意输入数据状态的改变不会影响到单元数据的处理,因此应当对读取数据的信号形式进行选择以保证数据信息在任何情况下都能够被读入;程序执行阶段,PLC主要是对用户程序进行自上而下的扫描,并且按照一定的顺序、录像运算得到结果;系统输出的阶段,PLC将刷新执行中的用户程序,并且根据相应状态在刷新过程中对前一阶段数据锁存,以便能够对其他的外设装置进行更好的驱动。 PLC的特点对于其在整个工作当中有着一定的影响,为了保证PLC能够发挥其作用,本文将对其特点做简要分析。 PLC的特点包括其可靠性、抗干扰能力强、自诊能力强、通信性强以及能够进行故障检测和相应的信息保护及恢复。 它的自侦能力可以对工作中出现的错误进行及时的过滤和硬件方面的保护;其通用性强使得PLC操作起来非常简便。 除此之外,PLC能够对生产机械和生产线进行控制,甚至可以控制一整个生产的过程。 它的操作简便而且易于掌握,所以对于相关人员的培训时间也较短,能够快速的投入到工作当中去。 以上诸多的PLC的特点,使得其在电气自动化当中被广泛的应用。

3、PLC在工业电气自动化中的应用

3.1PLC在传统机床系统当中的应用

传统的机床系统有着耗能、效率低等明显的不足,很容易在工业生产过程当中出现故障而影响质量和进度,而且这些故障一旦出现,维修的难度非常大。 除此之外,传统机床一直沿用继电器控制的系统,这种系统常常出现接线老化及接触不良等各种问题,严重的影响了工业的发展。 PLC被应用到传统机床系统之后,根据PLC的特点能够将传统机床中所使用的软、硬件进行合理的改造和完善,并且通过编程对其进行合理控制,对机床的使用状态进行及时的了解,从而提高了机床运行的稳定性,增强了传统机床的安全性,进一步的促进了企业的发展。 PLC在传统机床当中的应用主要是解决故障、提高效率。

3.2PLC在火电系统中的应用

火电系统中涉及到很多方面,水处理、输煤系统、排渣系统以及除灰系统等都是火电系统的辅助系统,PLC可以根据自身的工作原理对这些系统进行合理控制,与此同时应用PLC中的通讯模块实现数据的信息化、开放化,促进了各系统的相互协调。 其中输煤系统和除灰系统中应用的主要是PLC的顺序控制功能,输煤系统当中主要是分层时的网络结构,纵向分为主站层、远程10站以及现场传感器三个层。 可编程控制器与人机接口的设备两部分组成了主站层,OLC的CPU通常配置双机。 输煤程控紫铜的控制方式采用的是控制室集中控制,并且就地设置了事故紧急停机的开关和检修用启停的按钮。 除灰系统中需要进行控制的主要有输送风机、气化风机、收灰风机和管道压力,通常有PLC的传感器、主控柜和二次仪表三部分组成,有时按照网络结构时也可以疯操作员站和下位机控制器[3]。 对于断路器的控制和系统的自动切换需要用到PLC的开关量控制功能。 通过对PLC型号的合理选择,并且编制可行的控制程序,实现在变电所当中对于多台断路器的控制和信号的显示。

4、结束语

随着工业电气自动化的不断发展,它对于技术的要求也越来越高,使得PLC系统的产生和应用顺其自然。 PLC应用在工业电气自动化中,不仅使得自身的诸多功能得到了充分的发挥,而且有效的解决了工业发展中存在的很多问题与不足。 PLC的控制系统有着十分强的环境适应力,加之它变成简单,使用便捷,耗能小,在工业电气自动化中得到了广泛的应用,已经逐步的称谓了工业电气自动化的标志。

PLC应用在桥式起重机

传统桥式起重机电力拖动系统采用交流绕线转子异步电动机转子串电阻方法进行起动和调速,继电—接触器控制,这种控制系统主要缺点有: 1.1 桥式起重机工作环境恶劣,工作任务重,电动机以及所串电阻烧损和断裂故障时有发生。 1.2 继电—接触器控制系统可靠性差,操作复杂,故障率高。 1.3 转子串电阻调速,机械特性软,负载变化时转速也变化,调速不理想。 所串电阻长期发热,电能浪费大,效率低。 要从根本上解决这些问题,彻底改变传统控制方式。 年来,计算机技术和电力电子器件迅猛发展,电气传动和自动控制领域也日新月异。 其中,具有代表性交流变频装置和可编程控制器获了广泛应用,为PLC控制变频调速技术桥式起重机拖动系统中应用提供了有利条件。 桥式起重机大车、小车、主钩,副钩电动机都需独立运行,大车为两台电动机同时拖动,整个系统有5台电动机,4台变频器传动,并由4台PLC分别加以控制。 2.1 可编程控制器:完成系统逻辑控制部分 控制电动机正、反转、调速等控制信号进入PLC,PLC经处理后,向变频器发出起停、调速等信号,使电动机工作,是系统核心。 2.2 变频器:为电动机提供可变频率电源,实现电动机调速。 2.3 制动电阻:起重机放下重物时,重力加速度原因电动机将处于再生制动状态,拖动系统动能要反馈到变频器直流电路中,使直流电压不断上升,达到危险步。 ,必须将再生到直流电路里能量消耗掉,使直流电压保持允许范围内。 制动电阻就是用来消耗这部分能量。 桥式起重机大车、小车、副钩、主钩电动机工作由各自PLC控制,大车、小车、副钩、主钩电动机都运行电动状态,控制过程基本相似,变频器与PLC之间控制关系硬件组成以及软件实现基本相同,而主钩电动机运行状态处于电动、倒拉反接或再生制动状态,变频器与PLC之间控制关系硬件组成以及软件实现稍有区别4 结束语利用PLC控制变频调速技术,桥式起重机拖动系统各档速度、加速时间和制动减速时间都可现场情况由变频器设置,调整方便。 负载变化时,各档速度基本不变,调速性能好。 若是改造原有系统,大小车电动机仍可采用原有绕线转子异步电动机,将转子绕组引出线短接,去掉电刷和集电环,节省更换电动机费用。

本文原创来源:电气TV网,欢迎收藏本网址,收藏不迷路哦!

相关阅读

添加新评论