从传统控制到智能自动化的跨越 (传统控制的概念)

从传统控制到智能自动化的跨越:传统控制的概念与演变 从传统控制到智能自动化的跨越

一、引言

随着科技的飞速发展和数字化转型的浪潮,工业自动化领域正在经历一场深刻的变革。
从最初的简单机械控制,到如今的智能自动化,这一跨越代表着技术进步的巨大飞跃。
在这一过程中,传统控制理论作为基础,为我们铺平了道路,也为进一步的发展提供了可能。
本文将深入探讨传统控制的概念,以及它如何引领我们走向智能自动化的新时代。

二、传统控制的概念

传统控制,也称为经典控制,是工业自动化领域的基础理论之一。
它主要研究如何有效地对工业过程进行调控,以保证生产过程按照预设的目标和规格进行。
传统控制理论主要依赖于控制器,如PID(比例-积分-微分)控制器等,通过对过程的输入和输出进行测量和控制,以达到预期的控制效果。

在这一阶段,控制过程主要依赖于人工操作和预设的程序,虽然能够实现基本的自动化生产,但在面对复杂、多变的生产环境时,其灵活性和适应性往往受到限制。
传统控制理论为后续的现代控制理论和智能控制理论奠定了基础,搭建了一个坚实的平台。

三、从传统控制到智能自动化的演变

1. 现代控制理论的兴起

随着科技的发展,特别是计算机技术和信息技术的飞速发展,现代控制理论开始兴起。
现代控制理论不仅考虑了系统的当前状态,还能够预测未来的动态行为,因此能够处理更复杂、更动态的系统。
在这一阶段,计算机被广泛应用于控制系统设计、分析和优化,使得控制系统的性能得到了显著提升。

2. 智能化时代的到来

近年来,随着人工智能、大数据、物联网等技术的快速发展,智能化时代已经到来。
智能自动化作为这一时代的代表产物,集成了自动化、智能化技术,实现了工业过程的全面智能化。
在这一阶段,传统的控制器已经被智能控制系统所取代,智能系统能够自我学习、自我优化,并能够在复杂、多变的环境中自主决策和调整。

四、智能自动化的特点与挑战

智能自动化作为工业自动化领域的新阶段,具有以下显著特点:

1. 强大的自我学习和自我优化能力;
2. 能够处理复杂、多变的环境和未知情况;
3. 高效的协同作业和决策能力;
4. 高度集成信息化和自动化技术。

智能自动化也面临着一些挑战:

1. 数据安全和隐私保护问题;
2. 智能化技术的研发和人才培养;
3. 智能系统的兼容性和标准化问题;
4. 应对快速变化的市场需求和技术更新。

五、结论

从传统的控制到智能自动化,工业自动化领域经历了漫长而不断的发展过程。
传统控制作为这一过程的起点和基石,为我们铺平了道路。
如今,智能自动化已经成为工业自动化领域的新趋势和新方向。
面对未来的挑战和机遇,我们需要继续深入研究和发展智能自动化技术,以实现工业过程的全面智能化和高效化。
同时,我们也需要关注数据安全、隐私保护等问题,确保智能技术的健康发展。


请问传统酒店要怎么转智 能化?

老酒店进行智能化转型的具体步骤,可以参考以下的建议:第一步:制定智能化战略。 老酒店应该明确智能化转型的目标、范围、路径、指标等,制定符合自身特点和市场需求的智能化战略,确保智能化转型的方向和意义。 第二步:建立智能化生态系统。 老酒店应该构建包括智能技术、智能平台、智能内容、智能服务等在内的智能化生态系统,实现酒店业务的全面智能化,提升酒店竞争力和影响力。 第三步:提升数据能力。 老酒店应该加强数据的采集、存储、分析、应用等方面的能力,利用数据驱动运营管理、产品创新、服务优化等方面的改进,提升数据价值和效益。 第四步:实现智能服务。 老酒店应该利用人工智能、物联网、区块链等先进技术,为客户提供更加智能、便捷、安全、个性化的服务,提升客户体验和满意度。 老酒店智能化转型之路是一条从传统到智能的跨越之路,我推荐霍派智能工厂,他们家是源头工厂,专门做酒店智能化升级,主要是做天猫精灵和小度智能蓝牙mesh无线方案,可以语音控制灯光、窗帘、电视、空调等,对老酒店特别友好,不用停业升级,不用重新布线,30分钟完成一间智能客房升级。

自动驾驶革命:解密端到端背后的数据、算力和AI奇迹

作者|毫末智行数据智能科学家 贺翔

编辑|祥威

最近,特斯拉FSD V12的发布引发了业界对端到端自动驾驶的热议,业界纷纷猜测FSD V12的强大能力是如何训练出来的。从马斯克的测试视频可以大致归纳一下FSD V12系统的一些核心特征:

这些特征如此炫酷,引领着自动驾驶技术风向。 那么究竟什么是端到端自动驾驶,如何实现端到端自动驾驶呢?笔者作为自动驾驶领域的从业人员,将从实战应用的角度出发,探讨端到端如何落地。

一、自动驾驶的传统做法

从第一性原理来讲,自动驾驶就是一个序列到序列的映射过程,输入的是一个传感器信号序列,可能包括多个摄像头采集到的视频、Lidar采集到的点云、以及GPS、IMU等各类信息,输出的是一个驾驶决策序列,例如可以是驾驶动作序列、也可以输出轨迹序列再转为操作动作。

这个过程与大部分AI任务基本一致,这种映射过程就相当于一个函数 y = f(x)。但是实现这种函数往往难度比较大、任务极其复杂,对于这种复杂的任务,一般可以通过2类方式来解决:

传统分治法

分治法是将自动驾驶任务进行切分,定义多个子任务,每个子任务负责解决驾驶过程的某些特定问题,再进行系统集成来完成整个自动驾驶任务。传统上,这些子任务包括:

以网络的Apollo为例,整体系统架构如图所示,可见,要完成复杂的自动驾驶任务,需要先完成大量相对简单的子任务,这些子任务可以先进行独立开发测试,然后再将这些子任务集成到一个系统里进行验证。 这种方式通过把复杂的任务切分、简化、分而治之,大幅度降低了系统开发难度,同时可以针对每个模块都的输入输出进行白盒化分析,系统具备很好的可解释性,这对自动驾驶而言至关重要,一旦发生事故,必须要进行深入分析,找到原因。

但是,这种方式也有明显的弊端,例如模块太多、集成困难、错误累加等等,同时由于系统设计时引入了太多的人为先验经验,导致自动驾驶能力上限比较低,系统的泛化性比较差,对于没有见过的场景往往无法处理。

二、「端到端」技术兴起

相比之下,端到端自动驾驶不进行任务切分,希望直接输入传感器数据、输出驾驶决策(动作或者轨迹),从而抛弃传统自动驾驶里的感知、预测、规划、控制等各类子任务。这种方式有明显的优势,例如:

一个典型的端到端自动驾驶系统如图所示:

输入:大部分自动驾驶汽车都装载了相机、Lidar、毫米波雷达等各类传感器,采集这些传感器的数据,输入深度学习系统即可。

输出: 可以直接输出转向角、油门、刹车等控制信号,也可以先输出轨迹再结合不同的车辆动力学模型,将轨迹转为转向角、油门、刹车等控制信号。

可见,端到端自动驾驶系统就像人类的大脑,通过眼睛、耳朵等传感器接受信息,经过大脑处理后,下达指令给手脚执行命令,整个系统简单的都没啥可介绍的……。 但是这种简单也隐藏了巨大的风险,例如可解释性很差,无法像传统自动驾驶任务一样将中间结果拿出来进行分析;对数据的要求非常高,需要高质量的、分布多样的、海量的训练数据,否则AI就会实现废品进废品出。

与传统的自动驾驶方式对比可见,同样的输入、同样的输出,传统自动驾驶包含多个任务(多个模块),但是端到端只有一个任务。 此处容易产生一个误区,即认为传统的自动驾驶是多模块的、端到端自动驾驶是单模块的,把分模块与分任务的概念搞混了。

传统的自动驾驶是分任务的,必然是多个模块。 端到端自动驾驶可以用单模块来实现,当然也可以用多模块来实现,其区别在于是否端到端训练。 分任务系统是每个任务独立训练、独立优化、独立测评的,而端到端系统是把所有模块看成一个整体进行端到端训练、端到端测评的。

例如2023年CVPR best paper提出的UniAD就是一种分模块端到端训练方式,这种方式通过端到端训练避免了多任务训练的融合难题实现全局最优,又保留了分模块系统的优势、可以抛出中间模块的结果进行白盒化分析,反而更具灵活性对部署也更友好,如图所示:

分任务的自动驾驶系统更像model centric系统,开发者通过不断优化各个模型来提升各个任务的效果。 而端到端自动驾驶则更像data centric系统,通过对数据的调优来提升系统效果。

早年,由于自动驾驶积累的数据还非常少,端到端系统的效果往往比较差。 最近几年,随着带高阶辅助驾驶功能的量产车大规模落地,通过海量量产车可以采集到丰富的驾驶数据,覆盖各类场景,再加上最近几年AI算力的蓬勃发展,端到端自动驾驶在海量数据、海量算力的加持下,取得了突破性进展。

以特斯拉为例,通过遍布全球的几百万辆量产车,可以采集到足够丰富、足够多样的数据,再从中选出优质数据,在云端使用数万张GPU、以及自研的DOJO进行训练和验证,使得端到端自动驾驶能够从paper变成product。

到 2023 年初,特斯拉就声称已经分析了从特斯拉客户的汽车中收集的 1000 万个视频片段(clips),特斯拉判断完成一个端到端自动驾驶的训练至少需要100万个、分布多样、高质量的clips才能正常工作。

特斯拉通过分布在全球的几百万量产车,基于影子模式,每当自动驾驶决策与人类司机不一致时,就会采集并回传一个clip,已经累积了200P以上的数据,不管是数据规模、数据分布还是数据质量上都遥遥领先。 为了能在云端处理这些数据,当前特斯拉拥有近10万张A100,位居全球top5,预计到今年底会拥有100EFlops的算力,并针对自动驾驶自研了Dojo,在算力上同样遥遥领先。

在2022年,毫末智行也开始了对端到端自动驾驶以及自动驾驶大模型的探索,走过了一条从看图说话到完型填空到写小作文的道路。

最早,毫末将端到端自动驾驶简单地定义为一个看图说话任务,希望输入一串图片、输出一串驾驶决策,这种方式与机器翻译输入一串中文输出一串英文非常类似,所以可以选择端到端的序列模型,通过对输入图片进行编码,再解码输出驾驶决策。

但是训练之后,发现难以找到足够的数据来训练模型,因为手里采集到的数据绝大部分驾驶行为都是雷同的,例如大部分都是直行,能用的数据不到2%。 虽然项目效果未达预期,但是训练过程发现端到端训练需要消耗大量的算力,于是又开始着手解决算力问题,并且在2022年底跟火山引擎合作落地了业界领先的智算中心,等2023年大模型爆发再加上美国的制裁,算力市场已经一卡难求了,这也算一个意外收获。

三、端到端自动驾驶的挑战

从特斯拉的开发经验来看,端到端自动驾驶真不是一般的企业能玩的,其所需的数据规模、算力规模远远超出国内企业的承受能力。 除了成本高昂,端到端自动驾驶的技术难度也非常高,想要从实现从paper到product落地,相当于跨越从二踢脚到登月的难度。

端到端训练首先需要解决数据问题。 早年自动驾驶企业大多依赖采集车采集数据,这种数据是不真实的、分布有偏的、低质量的,只能做个demo,难以进行大规模端到端训练。 最近几年,随着量产车的规模化落地,业界很多公司都开始转向采用量产车通过影子模式采集数据,但这种模式依然面临艰巨的挑战。 首先是采集策略问题,即如何平衡数据的长尾问题(有效性)和数据的规模问题(成本),如果采集策略比较宽松,我们往往发现采集回来的数据大部分是废品数据,根本没有使用价值,如果采集策略过于严格,又担心丢失大量有价值的数据。 其次是数据的质量问题,如何定义数据质量是个艰巨的产品问题,如何精准地挑选出高质量的数据又是一个复杂的技术问题。 然后是数据分布问题,如何从海量clips中提取有效的特征、如何统计数据的分布、应该考虑哪些维度,都需要大量的工作。 对大部分自动驾驶企业,还会面临严重的数据泛化问题,因为不同的车型传感器配置差异巨大,采集的数据往往难以复用,而国内车企普遍车型众多,最后很可能是采了一堆数据放在那没法使用,看起来是数据资产,其实都是存储成本。 毫不夸张地说,数据会占据端到端自动驾驶开发中80%以上的研发成本。

在美国多轮制裁之下,国内采购GPU难上加难,大部分企业手里拥有的算力资源非常有限,拥有超过1000张A100的企业寥寥无几,甚至全国加起来都没有特斯拉一家企业多。 如何在算力受限的情况下,进行端到端自动驾驶的研发,是一个值得深入讨论的问题。

即使有了数据、有了算力,如何设计合适的自动驾驶算法来进行端到端训练,依然没有统一的答案。 业界做过很多的尝试,包括模仿学习、强化学习等等。 模仿学习是模仿人类专家的行为,从中学习最优策略,例如可以挑选一批高质量的驾驶行为数据来训练模型。 强化学习则是通过与环境的交互和奖罚不断试错进行学习,可以设定一个奖励机制,例如更少的碰撞、更高的效率等,在仿真环境里进行大规模试错。

端到端自动驾驶的评估也是一个十分困难的问题。 自动驾驶测评分为2类:闭环评估和开环评估,主要区别在于闭环评估可以接受到反馈信号从而形成反馈闭环。 开环评估可以对不同的任务通过输入输出来进行评估,例如单独评估感知、预测、规划的效果,并与真实数据或者标注数据进行对比,传统的自动驾驶可以通过开环评估迭代。 而端到端自动驾驶则难以进行开环评估,甚至也有人认为开环评估的端到端自动驾驶根本没有意义。 闭环评估一般通过在仿真引擎构建的虚拟世界里建立反馈闭环,但是仿真不真是业界一大难题,很难推广到现实世界中的各种场景。 例如在接近大货车时,即使自动驾驶能完美地通过,乘客往往也会有严重的恐慌心理,这种心理很难模拟。 而如果采用实车闭环测评,一方面测评成本太高,另一方面危险场景的hard case使用实车测评危险太大。

如前文所述,可解释性是端到端自动驾驶的一个弱点。 尤其是对于单模块端到端自动驾驶模型,实现可解释性极为困难,虽然可以将注意力权重可视化来提供部分解释性,但可靠性和实用性仍然十分有限,难以对事故、售后定责等问题给出有效的证据。 对于分模块的端到端系统,虽然可以将中间结果抛出以提供更多的信息,但是这种信息往往是神经网络的隐层特征,跟直观的、真实的证据链还是有一定的差距,难以跟客户解释清楚。

终于在云端完成了端到端自动驾驶的训练了,仿真效果也很好,最后是如何把这套系统搬到车上并且高效的运行。 云端系统为了处理数以百万计的clips,一般都采用复杂的网络结构、巨大的网络参数(高达10亿甚至更多),再用成千上万张A100进行训练。 但是车端往往只有非常低的算力、非常低的功耗,却要求极高的帧率(每秒处理的图片数量)、极低的延迟,这导致端到端自动驾驶上车十分困难,只有经过大规模的量化剪枝等提效手段之后才有可能。

这些最难的部分,特斯拉还没公开谈过是如何解决的。 今年的特斯拉AI Day,大家可以期待一下特斯拉的端到端如何破解以上难题。 在这之前,笔者谈一下毫末是如何做的。

四、自动驾驶端到端的探索

为了降低训练难度,毫末考虑将端到端大模型进行拆分,分为2个阶段,一个阶段解决感知问题(看懂世界),一个阶段解决认知问题(驾驶决策),这样做的好处有2个:

在感知阶段,主要任务是把视觉信号转为感知结果,可以利用海量的带高清视频的采集数据和量产车回传的各类corner case视频来训练。 而在认知阶段,则根据感知结果来进行驾驶决策,不需要输入视频,只需要输入感知结果和驾驶行为即可,这种数据可以通过量产车进行大规模定向采集。 通过这种拆解,既降低了任务的难度,又能充分利用不同的数据。

对于感知大模型,毫末从第一性原理出发,认为要实现端到端自动驾驶,感知就必须跟人类一样,同时具备识别二维纹理和三维结构、认识万物这三个条件,并且最好是纯视觉的。 基于这样的原则,我们建立了自监督感知大模型,将车载摄像头的二维视频数据进行编码,然后通过NeRF渲染来预测视频的下一帧图像,构建了4D特征空间。 再通过多模态技术将视觉信号与文本信号对齐,实现识别万物。

对于认知大模型,输入的是感知结果、输出的是驾驶决策,由于感知结果和驾驶决策都是结构化文本,其处理的都是文本符号,我们自然而然地想到了引入NLP相关的技术。

在2023年之前,BERT模型在互联网领域取得了非常成功的应用,于是我们尝试将BERT类的掩码模型引入自动驾驶认知模型,通过量产车回传海量的数据对。 这样输入历史10秒的、再用掩码盖住未来几秒的司机驾驶动作,然后让模型来预测驾驶动作,如果模型预测对了,就说明模型学会了开车,我们称之为完形填空。

但是训练效果并没有达到预期,分析后发现,与NLP任务完全不同,NLP通过mask部分单词,然后结合上下文可以把词猜出来,确实是完形填空。 但是自动驾驶场景下,mask历史动作是毫无意义的,只能mask未来动作,即只有上文没有下文,这其实是写作文,大家都知道写作文的难度比完形填空高太多了。

而且,人类驾驶汽车不仅依赖历史感知结果,还更多的依赖对未来的预判,老司机往往对未来几秒的交通环境有非常好的预判,例如隔壁车道的车会不会突然变道、路边的行人会不会横穿马路等。 基于这种预判,老司机再采取合理的驾驶动作。 这种预判,从模型上讲就是一种生成式模型。 于是我们将算法调整为GPT生成式模型,将历史感知结果使用BEV方式表达出来,再将BEV序列输入模型,让模型预测几秒钟之后未来世界可能发生的变化,这样就构建一个自回归的生成式模型,如下图所示:

然后,将感知和认识进行联合训练就可以实现端到端自动驾驶了。 但是,我们发现仅通过这种方式进行训练,想要达到非常好的驾驶效果,需要的数据规模、算力规模都极为庞大,我们根本无法承受。

例如,在传统的分任务自动驾驶范式下,感知算法识别塑料袋后,可以人为设计一个塑料袋可以压过去的驾驶策略,这样训练成本很低,但是在端到端范式下想要让自动驾驶识别塑料袋并学习到塑料袋是可以压过去,需要大量数据进行训练,成本极高,这也是特斯拉手握数万卡的原因之一。

塑料袋、泡沫等软性材质是可以压过去的、交警的手势优先级是高于红绿灯的、救护车是要避让的,这些其实都属于人类社会的世界知识,这些知识都是人类经过长期学习之后获得的。

传统的基于人工策略的自动驾驶成本很低,就是因为通过人工策略直接把人类社会积累的知识用在了自动驾驶上,省去了训练成本。 但是驾驶知识包罗万象,如果要基于人类知识为世间万物定制各类策略,也是一件不可能的事情。

那如何既能利用人类社会沉淀的知识,又能降低端到端自动驾驶的训练成本呢?考虑到大语言模型中压缩了几乎全人类的知识,如果能将跟驾驶决策相关的知识提取出来,应该能大幅度降低训练成本。

于是,毫末在端到端自动驾驶中又引入了大语言模型,通过感知大模型识别万物后,将这些信息输入LLM,通过LLM来提取世界知识,并作为辅助特征来指导驾驶决策。 如图所示,这个系统极为复杂,算力消耗非常大,目前还只能在云端运行,未来几年将加快向车端的落地。

五、未来趋势

过去一年,大语言模型的发展思路给端到端自动驾驶很多启发,在模型、数据上都值得借鉴。

在自然语言处理领域,Chatgpt作为基础模型展示了极强的泛化能力。 最近,学术界的研究在语言-视觉大模型上也取得了突破性进展,这种基础模型无疑会让自动驾驶如虎添翼。

特斯拉、Wayve等公司也提出将World Model作为自动驾驶基础模型的思路。 World model是一种基于视频来预测未来世界的模型,例如特斯拉的world model可以根据prompt给出的动作来做出反馈,并生成未来的世界图像,而且能保证多视角、时序的一致性。

大语言模型压缩了人类的大部分知识,当然也包括驾驶知识。 可以通过与LLM进行交互,提取驾驶常识。 例如传统的占用

人工智能是大势所趋吗

人工智能(Artificial Intelligence),英文缩写为AI。 它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。 人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,但没有一个统一的定义。 人工智能是对人的意识、思维的信息过程的模拟。 人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。 但是这种会自我思考的高级人工智能还需要科学理论和工程上的突破。 人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。 人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。 但不同的时代、不同的人对这种“复杂工作”的理解是不同的。 工智能的定义可以分为两部分,即“人工”和“智能”。 “人工”比较好理解,争议性也不大。 有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。 但总的来说,“人工系统”就是通常意义下的人工系统。 关于什么是“智能”,就问题多多了。 这涉及到其它诸如意识(CONSCIOUSNESS)、自我(SELF)、思维(MIND)(包括无意识的思维(UNCONSCIOUS_MIND)等等问题。 人唯一了解的智能是人本身的智能,这是普遍认同的观点。 但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。 因此人工智能的研究往往涉及对人的智能本身的研究。 其它关于动物或其它人造系统的智能也普遍被认为是人工智能相关的研究课题。 人工智能在计算机领域内,得到了愈加广泛的重视。 并在机器人,经济政治决策,控制系统,仿真系统中得到应用。 著名的美国斯坦福大学人工智能研究中心尼尔逊教授对人工智能下了这样一个定义:“人工智能是关于知识的学科――怎样表示知识以及怎样获得知识并使用知识的科学。 ”而另一个美国麻省理工学院的温斯顿教授认为:“人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。 ”这些说法反映了人工智能学科的基本思想和基本内容。 即人工智能是研究人类智能活动的规律,构造具有一定智能的人工系统,研究如何让计算机去完成以往需要人的智力才能胜任的工作,也就是研究如何应用计算机的软硬件来模拟人类某些智能行为的基本理论、方法和技术。 人工智能是计算机学科的一个分支,二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能)。 也被认为是二十一世纪(基因工程、纳米科学、人工智能)三大尖端技术之一。 这是因为近三十年来它获得了迅速的发展,在很多学科领域都获得了广泛应用,并取得了丰硕的成果,人工智能已逐步成为一个独立的分支,无论在理论和实践上都已自成一个系统。 人工智能是研究使计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。 人工智能将涉及到计算机科学、心理学、哲学和语言学等学科。 可以说几乎是自然科学和社会科学的所有学科,其范围已远远超出了计算机科学的范畴,人工智能与思维科学的关系是实践和理论的关系,人工智能是处于思维科学的技术应用层次,是它的一个应用分支。 从思维观点看,人工智能不仅限于逻辑思维,要考虑形象思维、灵感思维才能促进人工智能的突破性的发展,数学常被认为是多种学科的基础科学,数学也进入语言、思维领域,人工智能学科也必须借用数学工具,数学不仅在标准逻辑、模糊数学等范围发挥作用,数学进入人工智能学科,它们将互相促进而更快地发展。 例如繁重的科学和工程计算本来是要人脑来承担的,如今计算机不但能完成这种计算,而且能够比人脑做得更快、更准确,因此当代人已不再把这种计算看作是“需要人类智能才能完成的复杂任务”,可见复杂工作的定义是随着时代的发展和技术的进步而变化的,人工智能这门科学的具体目标也自然随着时代的变化而发展。 它一方面不断获得新的进展,另一方面又转向更有意义、更加困难的目标。 通常,“机器学习”的数学基础是“统计学”、“信息论”和“控制论”。 还包括其他非数学学科。 这类“机器学习”对“经验”的依赖性很强。 计算机需要不断从解决一类问题的经验中获取知识,学习策略,在遇到类似的问题时,运用经验知识解决问题并积累新的经验,就像普通人一样。 我们可以将这样的学习方式称之为“连续型学习”。 但人类除了会从经验中学习之外,还会创造,即“跳跃型学习”。 这在某些情形下被称为“灵感”或“顿悟”。 一直以来,计算机最难学会的就是“顿悟”。 或者再严格一些来说,计算机在学习和“实践”方面难以学会“不依赖于量变的质变”,很难从一种“质”直接到另一种“质”,或者从一个“概念”直接到另一个“概念”。 正因为如此,这里的“实践”并非同人类一样的实践。 人类的实践过程同时包括经验和创造。 [1]这是智能化研究者梦寐以求的东西。 2013年,帝金数据普数中心数据研究员S.C WANG开发了一种新的数据分析方法,该方法导出了研究函数性质的新方法。 作者发现,新数据分析方法给计算机学会“创造”提供了一种方法。 本质上,这种方法为人的“创造力”的模式化提供了一种相当有效的途径。 这种途径是数学赋予的,是普通人无法拥有但计算机可以拥有的“能力”。 从此,计算机不仅精于算,还会因精于算而精于创造。 计算机学家们应该斩钉截铁地剥夺“精于创造”的计算机过于全面的操作能力,否则计算机真的有一天会“反捕”人类。 [1]当回头审视新方法的推演过程和数学的时候,作者拓展了对思维和数学的认识。 数学简洁,清晰,可靠性、模式化强。 在数学的发展史上,处处闪耀着数学大师们创造力的光辉。 这些创造力以各种数学定理或结论的方式呈现出来,而数学定理最大的特点就是:建立在一些基本的概念和公理上,以模式化的语言方式表达出来的包含丰富信息的逻辑结构。 应该说,数学是最单纯、最直白地反映着(至少一类)创造力模式的学科。 [1]机器视觉:机器视觉,指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别,专家系统,自动规划,智能搜索,定理证明,博弈,自动程序设计,智能控制,机器人学,语言和图像理解,遗传编程等。 人工智能是一门边沿学科,属于自然科学和社会科学的交叉。 哲学和认知科学,数学,神经生理学,心理学,计算机科学,信息论,控制论,不定性论自然语言处理,知识表现,智能搜索,推理,规划,机器学习,知识获取,组合调度问题,感知问题,模式识别,逻辑程序设计软计算,不精确和不确定的管理,人工生命,神经网络,复杂系统,遗传算法人工智能就其本质而言,是对人的思维的信息过程的模拟。 对于人的思维模拟可以从两条道路进行,一是结构模拟,仿照人脑的结构机制,制造出“类人脑”的机器;二是功能模拟,暂时撇开人脑的内部结构,而从其功能过程进行模拟。 现代电子计算机的产生便是对人脑思维功能的模拟,是对人脑思维的信息过程的模拟。 弱人工智能如今不断地迅猛发展,尤其是2008年经济危机后,美日欧希望借机器人等实现再工业化,工业机器人以比以往任何时候更快的速度发展,更加带动了弱人工智能和相关领域产业的不断突破,很多必须用人来做的工作如今已经能用机器人实现。 而强人工智能则暂时处于瓶颈,还需要科学家们和人类的努力。 1956年夏季,以麦卡赛、明斯基、罗切斯特和申农等为首的一批有远见卓识的年轻科学家在一起聚会,共同研究和探讨用机器模拟智能的一系列有关问题,并首次提出了“人工智能”这一术语,它标志着“人工智能”这门新兴学科的正式诞生。 IBM公司“深蓝”电脑击败了人类的世界国际象棋冠军更是人工智能技术的一个完美表现。 从1956年正式提出人工智能学科算起,50多年来,取得长足的发展,成为一门广泛的交叉和前沿科学。 总的说来,人工智能的目的就是让计算机这台机器能够像人一样思考。 如果希望做出一台能够思考的机器,那就必须知道什么是思考,更进一步讲就是什么是智慧。 什么样的机器才是智慧的呢?科学家已经作出了汽车,火车,飞机,收音机等等,它们模仿我们身体器官的功能,但是能不能模仿人类大脑的功能呢?到目前为止,我们也仅仅知道这个装在我们天灵盖里面的东西是由数十亿个神经细胞组成的器官,我们对这个东西知之甚少,模仿它或许是天下最困难的事情了。 当计算机出现后,人类开始真正有了一个可以模拟人类思维的工具,在以后的岁月中,无数科学家为这个目标努力着。 如今人工智能已经不再是几个科学家的专利了,全世界几乎所有大学的计算机系都有人在研究这门学科,学习计算机的大学生也必须学习这样一门课程,在大家不懈的努力下,如今计算机似乎已经变得十分聪明了。 例如,1997年5月,IBM公司研制的深蓝(DEEP BLUE)计算机战胜了国际象棋大师卡斯帕洛夫(KASPAROV)。 大家或许不会注意到,在一些地方计算机帮助人进行其它原来只属于人类的工作,计算机以它的高速和准确为人类发挥着它的作用。 人工智能始终是计算机科学的前沿学科,计算机编程语言和其它计算机软件都因为有了人工智能的进展而得以存在。 用来研究人工智能的主要物质基础以及能够实现人工智能技术平台的机器就是计算机,人工智能的发展历史是和计算机科学技术的发展史联系在一起的。 除了计算机科学以外,人工智能还涉及信息论、控制论、自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学等多门学科。 人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。 人工智能技术研究 ARTIFICIAL INTELLIGENCE AND ROBOTICS RESEARCH 是一本关注人工智能与机器人研究领域最新进展的国际中文期刊,由汉斯出版社发行,本刊支持思想创新、学术创新,倡导科学,繁荣学术,集学术性、思想性为一体,旨在为了给世界范围内的科学家、学者、科研人员提供一个传播、分享和讨论人工智能与机器人研究领域内不同方向问题与发展的交流平台。 如今没有统一的原理或范式指导人工智能研究。 许多问题上研究者都存在争论。 其中几个长久以来仍没有结论的问题是:是否应从心理或神经方面模拟人工智能?或者像鸟类生物学对于航空工程一样,人类生物学对于人工智能研究是没有关系的?智能行为能否用简单的原则(如逻辑或优化)来描述?还是必须解决大量完全无关的问题?智能是否可以使用高级符号表达,如词和想法?还是需要“子符号”的处理?JOHN HAUGELAND提出了GOFAI(出色的老式人工智能)的概念,也提议人工智能应归类为SYNTHETIC INTELLIGENCE,[29]这个概念后来被某些非GOFAI研究者采纳。 20世纪40年代到50年代,许多研究者探索神经病学,信息理论及控制论之间的联系。 其中还造出一些使用电子网络构造的初步智能,如W. GREY WALTER的TURTLES和JOHNS HOPKINS BEAST。 这些研究者还经常在普林斯顿大学和英国的RATIO CLUB举行技术协会会议.直到1960, 大部分人已经放弃这个方法,尽管在80年代再次提出这些原理。 当20世纪50年代,数字计算机研制成功,研究者开始探索人类智能是否能简化成符号处理。 研究主要集中在卡内基梅隆大学, 斯坦福大学和麻省理工学院,而各自有独立的研究风格。 JOHN HAUGELAND称这些方法为GOFAI(出色的老式人工智能)。 [33] 60年代,符号方法在小型证明程序上模拟高级思考有很大的成就。 基于控制论或神经网络的方法则置于次要。 [34] 60~70年代的研究者确信符号方法最终可以成功创造强人工智能的机器,同时这也是他们的目标。 认知模拟经济学家赫伯特·西蒙和艾伦·纽厄尔研究人类问题解决能力和尝试将其形式化,同时他们为人工智能的基本原理打下基础,如认知科学, 运筹学和经营科学。 他们的研究团队使用心理学实验的结果开发模拟人类解决问题方法的程序。 这方法一直在卡内基梅隆大学沿袭下来,并在80年代于SOAR发展到高峰。 基于逻辑不像艾伦·纽厄尔和赫伯特·西蒙,JOHN MCCARTHY认为机器不需要模拟人类的思想,而应尝试找到抽象推理和解决问题的本质,不管人们是否使用同样的算法。 他在斯坦福大学的实验室致力于使用形式化逻辑解决多种问题,包括知识表示, 智能规划和机器学习. 致力于逻辑方法的还有爱丁堡大学,而促成欧洲的其他地方开发编程语言PROLOG和逻辑编程科学.“反逻辑”斯坦福大学的研究者 (如马文·闵斯基和西摩尔·派普特)发现要解决计算机视觉和自然语言处理的困难问题,需要专门的方案-他们主张不存在简单和通用原理(如逻辑)能够达到所有的智能行为。 ROGER SCHANK 描述他们的“反逻辑”方法为 SCRUFFY .常识知识库 (如DOUG LENAT的CYC)就是SCRUFFYAI的例子,因为他们必须人工一次编写一个复杂的概念。 基于知识大约在1970年出现大容量内存计算机,研究者分别以三个方法开始把知识构造成应用软件。 这场“知识革命”促成专家系统的开发与计划,这是第一个成功的人工智能软件形式。 “知识革命”同时让人们意识到许多简单的人工智能软件可能需要大量的知识。 80年代符号人工智能停滞不前,很多人认为符号系统永远不可能模仿人类所有的认知过程,特别是感知,机器人,机器学习和模式识别。 很多研究者开始关注子符号方法解决特定的人工智能问题。 自下而上, 接口AGENT,嵌入环境(机器人),行为主义,新式AI机器人领域相关的研究者,如RODNEY BROOKS,否定符号人工智能而专注于机器人移动和求生等基本的工程问题。 他们的工作再次关注早期控制论研究者的观点,同时提出了在人工智能中使用控制理论。 这与认知科学领域中的表征感知论点是一致的:更高的智能需要个体的表征(如移动,感知和形象)。 计算智能80年代中DAVID RUMELHART 等再次提出神经网络和联结主义. 这和其他的子符号方法,如模糊控制和进化计算,都属于计算智能学科研究范畴。 90年代,人工智能研究发展出复杂的数学工具来解决特定的分支问题。 这些工具是真正的科学方法,即这些方法的结果是可测量的和可验证的,同时也是人工智能成功的原因。 共用的数学语言也允许已有学科的合作(如数学,经济或运筹学)。 STUART J. RUSSELL和PETER NORVIG指出这些进步不亚于“革命”和“NEATS的成功”。 有人批评这些技术太专注于特定的问题,而没有考虑长远的强人工智能目标。 智能AGENT范式智能AGENT是一个会感知环境并作出行动以达致目标的系统。 最简单的智能AGENT是那些可以解决特定问题的程序。 更复杂的AGENT包括人类和人类组织(如公司)。 这些范式可以让研究者研究单独的问题和找出有用且可验证的方案,而不需考虑单一的方法。 一个解决特定问题的AGENT可以使用任何可行的方法-一些AGENT用符号方法和逻辑方法,一些则是子符号神经网络或其他新的方法。 范式同时也给研究者提供一个与其他领域沟通的共同语言--如决策论和经济学(也使用ABSTRACT AGENTS的概念)。 90年代智能AGENT范式被广泛接受。 AGENT体系结构和认知体系结构研究者设计出一些系统来处理多ANGENT系统中智能AGENT之间的相互作用。 一个系统中包含符号和子符号部分的系统称为混合智能系统 ,而对这种系统的研究则是人工智能系统集成。 分级控制系统则给反应级别的子符号AI 和最高级别的传统符号AI提供桥梁,同时放宽了规划和世界建模的时间。 RODNEY BROOKS的SUBSUMPTION ARCHITECTURE就是一个早期的分级系统计划。 机器视、听、触、感觉及思维方式的模拟:指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别,专家系统,智能搜索,定理证明,逻辑推理,博弈,信息感应与辨证处理。 人工智能是一门边沿学科,属于自然科学、社会科学、技术科学三向交叉学科。 哲学和认知科学,数学,神经生理学,心理学,计算机科学,信息论,控制论,不定性论,仿生学,社会结构学与科学发展观。 语言的学习与处理,知识表现,智能搜索,推理,规划,机器学习,知识获取,组合调度问题,感知问题,模式识别,逻辑程序设计,软计算,不精确和不确定的管理,人工生命,神经网络,复杂系统,遗传算法人类思维方式,最关键的难题还是机器的自主创造性思维能力的塑造与提升。 机器翻译,智能控制,专家系统,机器人学,语言和图像理解,遗传编程机器人工厂,自动程序设计,航天应用,庞大的信息处理,储存与管理,执行化合生命体无法执行的或复杂或规模庞大的任务等等。 值得一提的是,机器翻译是人工智能的重要分支和最先应用领域。 不过就已有的机译成就来看,机译系统的译文质量离终极目标仍相差甚远;而机译质量是机译系统成败的关键。 中国数学家、语言学家周海中教授曾在论文《机器翻译五十年》中指出:要提高机译的质量,首先要解决的是语言本身问题而不是程序设计问题;单靠若干程序来做机译系统,肯定是无法提高机译质量的;另外在人类尚未明了大脑是如何进行语言的模糊识别和逻辑判断的情况下,机译要想达到“信、达、雅”的程度是不可能的。 人工智能还在研究中,但有学者认为让计算机拥有智商是很危险的,它可能会反抗人类。 这种隐患也在多部电影中发生过,其主要的关键是允不允许机器拥有自主意识的产生与延续,如果使机器拥有自主意识,则意味着机器具有与人同等或类似的创造性,自我保护意识,情感和自发行为。 人工智能在计算机上实现时有2种不同的方式。 一种是采用传统的编程技术,使系统呈现智能的效果,而不考虑所用方法是否与人或动物机体所用的方法相同。 这种方法叫工程学方法(ENGINEERING APPROACH),它已在一些领域内作出了成果,如文字识别、电脑下棋等。 另一种是模拟法(MODELING APPROACH),它不仅要看效果,还要求实现方法也和人类或生物机体所用的方法相同或相类似。 遗传算法(GENERIC ALGORITHM,简称GA)和人工神经网络(ARTIFICIAL NEURAL NETWORK,简称ANN)均属后一类型。 遗传算法模拟人类或生物的遗传-进化机制,人工神经网络则是模拟人类或动物大脑中神经细胞的活动方式。 为了得到相同智能效果,两种方式通常都可使用。 采用前一种方法,需要人工详细规定程序逻辑,如果游戏简单,还是方便的。 如果游戏复杂,角色数量和活动空间增加,相应的逻辑就会很复杂(按指数式增长),人工编程就非常繁琐,容易出错。 而一旦出错,就必须修改原程序,重新编译、调试,最后为用户提供一个新的版本或提供一个新补丁,非常麻烦。 采用后一种方法时,编程者要为每一角色设计一个智能系统(一个模块)来进行控制,这个智能系统(模块)开始什么也不懂,就像初生婴儿那样,但它能够学习,能渐渐地适应环境,应付各种复杂情况。 这种系统开始也常犯错误,但它能吸取教训,下一次运行时就可能改正,至少不会永远错下去,用不到发布新版本或打补丁。 利用这种方法来实现人工智能,要求编程者具有生物学的思考方法,入门难度大一点。 但一旦入了门,就可得到广泛应用。 由于这种方法编程时无须对角色的活动规律做详细规定,应用于复杂问题,通常会比前一种方法更省力。

本文原创来源:电气TV网,欢迎收藏本网址,收藏不迷路哦!

相关阅读

添加新评论