揭秘200pid程序:深入了解其功能、原理及应用 (揭秘2024年新澳门开奖结果)

揭秘200PID程序:深入了解其功能、原理及应用(远离赌博,警惕违法犯罪) 原理及应用

一、引言

随着信息技术的飞速发展,互联网上的各种应用程序层出不穷。
其中,一些不法分子利用人们的好奇心和贪婪心理,通过开发所谓的“神秘程序”进行非法活动。
近期,我们发现有一种名为“200PID程序”在网络上流传,声称能够预测彩票开奖结果,尤其是新澳门开奖结果。
本文旨在深入了解这种程序的功能、原理及应用,揭示其背后的真相,引导公众提高警惕,远离违法犯罪。

二、什么是200PID程序

200PID程序是一种声称具有预测彩票开奖结果功能的程序。
据称,该程序通过收集和分析历史数据,结合复杂算法来预测未来的彩票开奖号码。
我们需要明确的是,这种程序并非官方发布,也未经任何权威机构认证。
其真实性和可靠性有待进一步验证。

三、200PID程序的功能

1. 数据收集:200PID程序能够收集大量的彩票历史数据,包括号码、赔率、开奖时间等。
2. 数据分析:通过对收集到的数据进行深度分析,寻找潜在的模式和规律。
3. 预测开奖号码:根据分析结果,程序会生成预测的开奖号码。
4. 风险评估:用户可以根据程序的预测结果进行风险评估,决定是否购买彩票。

四、200PID程序的原理

200PID程序的原理主要基于数据分析和算法模型。
通过对历史数据的收集和分析,程序试图找到彩票开奖的规律和模式。
利用这些规律和模式来预测未来的开奖结果。
彩票开奖是一种完全随机的过程,任何试图通过数据分析来预测未来开奖结果的尝试都是不可靠的。
因此,我们不能过分依赖这种程序来做出决策。

五、应用与风险

尽管200PID程序在某些人中间可能具有一定的吸引力,但我们必须认识到其潜在的风险和危害。
购买彩票本是一种娱乐行为,如果过分依赖预测程序,可能会导致人们投入过多的金钱和精力,甚至影响到生活和家庭。
这种程序可能存在欺诈和诈骗的风险。
一些不法分子可能会利用这种程序进行非法敛财活动,骗取人们的钱财。
最后,参与赌博活动是非法的,可能会带来法律责任。
因此,我们必须保持警惕,远离这种违法犯罪行为。

六、如何防范风险

1. 提高警惕:不要轻信所谓的预测程序和神秘方法,要保持理性和警惕。
2. 拒绝参与:不要参与任何形式的赌博活动,包括使用200PID程序预测彩票开奖结果。
3. 遵守法律:购买彩票是一种娱乐行为,必须遵守相关法律法规,不要从事非法活动。
4. 理性消费:要理性对待彩票购买,不要过度投入,以免影响生活和家庭。
5. 学习相关知识:了解彩票开奖的随机性和公平性,学习相关法律法规和彩票购买常识。

七、结语

200PID程序是一种声称能够预测彩票开奖结果的程序,但其真实性和可靠性有待验证。
我们必须保持警惕,远离任何形式的赌博活动,遵守相关法律法规。
同时,我们要理性对待彩票购买,将其视为一种娱乐行为,不要过度投入。
通过学习和了解相关知识,我们要提高自己的防范意识,避免受到不法分子的欺骗和诈骗。
让我们共同维护社会的和谐与稳定,远离违法犯罪行为。


西门子PLC程序

PLC的发展史PLC即可编程控制器(Programmable logic Controller,是指以计算机技术为基础的新型工业控制装置。 在1987年国际电工委员会(International Electrical Committee)颁布的PLC标准草案中对PLC做了如下定义: PLC英文全称Programmable Logic Controller ,中文全称为可编程逻辑控制器,定义是:一种数字运算操作的电子系统,专为在工业环境应用而设计的。 它采用一类可编程的存储器,用于其内部存储程序,执行逻辑运算,顺序控制,定时,计数与算术操作等面向用户的指令,并通过数字或模拟式输入/输出控制各种类型的机械或生产过程是可编程逻辑电路,也是一种和硬件结合很紧密的语言,在半导体方面有很重要的应用,可以说有半导体的地方就有PLC “PLC是一种专门为在工业环境下应用而设计的数字运算操作的电子装置。 它采用可以编制程序的存储器,用来在其内部存储执行逻辑运算、顺序运算、计时、计数和算术运算等操作的指令,并能通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程。 PLC及其有关的外围设备都应该按易于与工业控制系统形成一个整体,易于扩展其功能的原则而设计。 ”一、PLC的产生 1.继-接控制回顾 由学生回答继电器(接触器)的结构、原理、画出三相异步电机启-停的主电路图、控制电路图 由学生归纳出继-接控制的不足,从而引出“PLC的产生” 2.PLC的产生 68年美国通用汽车公司(GM)招标要求: (1)软连接代替硬接线 (2)维护方便 (3)可靠性高于继电器控制柜 (4)体积小于继电器控制柜 (5)成本低于继电器控制柜 (6)有数据通讯功能 (7)输入115V (8)可在恶劣环境下工作 (9)扩展时,原系统变更要少 (10)用户程序存储容量可扩展到4K 核心思想: •用程序代替硬接线 •输入/输出电平可与外部装置直接相联 •结构易于扩展 这是PLC的雏形。 69年美国DEC公司研制出世界上第一台PLC(PDP-14),并在GM公司汽车生产线上应用成功 PLC的诞生:•1969年,美国研制出世界第一台PDP-14 •1971年,日本研制出第一台DCS-8 •1973年,德国研制出第一台PLC •1974年,中国研制出第一台PLC 二、PLC的特点、现状与发展 (一)特点 (1)体积小 (2)可靠性高 (3)柔性好,可在线更改程序 (4)对环境条件无要求 (5)价格低廉……具备招标要求的所有功能 (二)现状 80%以上的行业,80%以上的设备均可使用PLC (三)发展发展史: 第一代:1969年~1972年,代表产品有 •美国DEC公司的PDP-14/L •日本立石电机公司的SCY-022 •日本北辰电机公司的HOSC-20 第二代:1973年~1975年,代表产品有 •美国GE公司的LOGISTROT •德国SIEMENS公司的SIMATIC S3、S4系列 •日本富士电机公司的SC系列 第三代:1976~1983年,代表产品有 •美国GOULD公司的M84、484、584、684、884 •德国SIEMENS公司的SIMATIC S5系列 •日本三菱公司的MELPLAC-50、550 第四代:1983年~现在,代表产品有 •美国GOULD公司的A5900 •德国西门子公司的S7系列 发展方向: •产品规模向两极分化 •处理模拟量 •追求高可靠性 •通讯接口和智能模块 •系统操作站配高分辨率的监视器 •追求软、硬件标准化 三、PLC的分类•按结构分: •整体型 •组合型 •按I/O点数及内存容量分: •超小型:小于64点,256Byet~1KB •小 型:65~128点,1~3。 6KB •中 型:129~512点,3。 6~13KB •大 型:513~896点,大于13KB •超大型:大于896点,大于13KB 四、网络型PLC与DCS的关系 DCS起源于模拟量 PLC起源于开关量 二者相互渗透、取长补短,功能上日趋接近,使数字世界、模拟世界更加模糊 决定DCS与PLC应用面大小的是其性能/价格比1、PLC即可编程控制器(Programmable logic Controller,是指以计算机技术为基础的新型工业控制装置。 在1987年国际电工委员会(International Electrical Committee)颁布的PLC标准草案中对PLC做了如下定义: PLC英文全称Programmable Logic Controller ,中文全称为可编程逻辑控制器,定义是:一种数字运算操作的电子系统,专为在工业环境应用而设计的。 它采用一类可编程的存储器,用于其内部存储程序,执行逻辑运算,顺序控制,定时,计数与算术操作等面向用户的指令,并通过数字或模拟式输入/输出控制各种类型的机械或生产过程是可编程逻辑电路,也是一种和硬件结合很紧密的语言,在半导体方面有很重要的应用,可以说有半导体的地方就有PLC “PLC是一种专门为在工业环境下应用而设计的数字运算操作的电子装置。 它采用可以编制程序的存储器,用来在其内部存储执行逻辑运算、顺序运算、计时、计数和算术运算等操作的指令,并能通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程。 PLC及其有关的外围设备都应该按易于与工业控制系统形成一个整体,易于扩展其功能的原则而设计。 ” PLC的特点 2.1可靠性高,抗干扰能力强 高可靠性是电气控制设备的关键性能。 PLC由于采用现代大规模集成电路技术,采用严格的生产工艺制造,内部电路采取了先进的抗干扰技术,具有很高的可靠性。 例如三菱公司生产的F系列PLC平均无故障时间高达30万小时。 一些使用冗余CPU的PLC的平均无故障工作时间则更长。 从PLC的机外电路来说,使用PLC构成控制系统,和同等规模的继电接触器系统相比,电气接线及开关接点已减少到数百甚至数千分之一,故障也就大大降低。 此外,PLC带有硬件故障自我检测功能,出现故障时可及时发出警报信息。 在应用软件中,应用者还可以编入外围器件的故障自诊断程序,使系统中除PLC以外的电路及设备也获得故障自诊断保护。 这样,整个系统具有极高的可靠性也就不奇怪了。 2.2配套齐全,功能完善,适用性强 PLC发展到今天,已经形成了大、中、小各种规模的系列化产品。 可以用于各种规模的工业控制场合。 除了逻辑处理功能以外,现代PLC大多具有完善的数据运算能力,可用于各种数字控制领域。 近年来PLC的功能单元大量涌现,使PLC渗透到了位置控制、温度控制、CNC等各种工业控制中。 加上PLC通信能力的增强及人机界面技术的发展,使用PLC组成各种控制系统变得非常容易。 2.3易学易用,深受工程技术人员欢迎 PLC作为通用工业控制计算机,是面向工矿企业的工控设备。 它接口容易,编程语言易于为工程技术人员接受。 梯形图语言的图形符号与表达方式和继电器电路图相当接近,只用PLC的少量开关量逻辑控制指令就可以方便地实现继电器电路的功能。 为不熟悉电子电路、不懂计算机原理和汇编语言的人使用计算机从事工业控制打开了方便之门。 2.4系统的设计、建造工作量小,维护方便,容易改造 PLC用存储逻辑代替接线逻辑,大大减少了控制设备外部的接线,使控制系统设计及建造的周期大为缩短,同时维护也变得容易起来。 更重要的是使同一设备经过改变程序改变生产过程成为可能。 这很适合多品种、小批量的生产场合。 2.5体积小,重量轻,能耗低 以超小型PLC为例,新近出产的品种底部尺寸小于100mm,重量小于150g,功耗仅数瓦。 由于体积小很容易装入机械内部,是实现机电一体化的理想控制设备。 3。 PLC基础知识 1.1 PLC的发展历程 在工业生产过程中,大量的开关量顺序控制,它按照逻辑条件进行顺序动作,并按照逻辑关系进行连锁保护动作的控制,及大量离散量的数据采集。 传统上,这些功能是通过气动或电气控制系统来实现的。 4. PLC的应用领域 目前,PLC在国内外已广泛应用于钢铁、石油、化工、电力、建材、机械制造、汽车、轻纺、交通运输、环保及文化娱乐等各个行业,使用情况大致可归纳为如下几类。 4.1开关量的逻辑控制 这是PLC最基本、最广泛的应用领域,它取代传统的继电器电路,实现逻辑控制、顺序控制,既可用于单台设备的控制,也可用于多机群控及自动化流水线。 如注塑机、印刷机、订书机械、组合机床、磨床、包装生产线、电镀流水线等。 4.2模拟量控制 在工业生产过程当中,有许多连续变化的量,如温度、压力、流量、液位和速度等都是模拟量。 为了使可编程控制器处理模拟量,必须实现模拟量(Analog)和数字量(Digital)之间的A/D转换及D/A转换。 PLC厂家都生产配套的A/D和D/A转换模块,使可编程控制器用于模拟量控制。 4.3运动控制 PLC可以用于圆周运动或直线运动的控制。 从控制机构配置来说,早期直接用于开关量I/O模块连接位置传感器和执行机构,现在一般使用专用的运动控制模块。 如可驱动步进电机或伺服电机的单轴或多轴位置控制模块。 世界上各主要PLC厂家的产品几乎都有运动控制功能,广泛用于各种机械、机床、机器人、电梯等场合。 4.4过程控制 过程控制是指对温度、压力、流量等模拟量的闭环控制。 作为工业控制计算机,PLC能编制各种各样的控制算法程序,完成闭环控制。 PID调节是一般闭环控制系统中用得较多的调节方法。 大中型PLC都有PID模块,目前许多小型PLC也具有此功能模块。 PID处理一般是运行专用的PID子程序。 过程控制在冶金、化工、热处理、锅炉控制等场合有非常广泛的应用。 4.5数据处理 现代PLC具有数学运算(含矩阵运算、函数运算、逻辑运算)、数据传送、数据转换、排序、查表、位操作等功能,可以完成数据的采集、分析及处理。 这些数据可以与存储在存储器中的参考值比较,完成一定的控制操作,也可以利用通信功能传送到别的智能装置,或将它们打印制表。 数据处理一般用于大型控制系统,如无人控制的柔性制造系统;也可用于过程控制系统,如造纸、冶金、食品工业中的一些大型控制系统。 4.6通信及联网 PLC通信含PLC间的通信及PLC与其它智能设备间的通信。 随着计算机控制的发展,工厂自动化网络发展得很快,各PLC厂商都十分重视PLC的通信功能,纷纷推出各自的网络系统。 新近生产的PLC都具有通信接口,通信非常方便。 5. PLC的国内外状况 在工业生产过程中,大量的开关量顺序控制,它按照逻辑条件进行顺序动作,并按照逻辑关系进行连锁保护动作的控制,及大量离散量的数据采集。 传统上,这些功能是通过气动或电气控制系统来实现的。 1968年美国GM(通用汽车)公司提出取代继电气控制装置的要求,第二年,美国数字设备公司(DEC)研制出了基于集成电路和电子技术的控制装置,首次采用程序化的手段应用于电气控制,这就是第一代可编程序控制器,称Programmable ,是世界上公认的第一台PLC. 限于当时的元器件条件及计算机发展水平,早期的PLC主要由分立元件和中小规模集成电路组成,可以完成简单的逻辑控制及定时、计数功能。 20世纪70年代初出现了微处理器。 人们很快将其引入可编程控制器,使PLC增加了运算、数据传送及处理等功能,完成了真正具有计算机特征的工业控制装置。 为了方便熟悉继电器、接触器系统的工程技术人员使用,可编程控制器采用和继电器电路图类似的梯形图作为主要编程语言,并将参加运算及处理的计算机存储元件都以继电器命名。 此时的PLC为微机技术和继电器常规控制概念相结合的产物。 个人计算机(简称PC)发展起来后,为了方便,也为了反映可编程控制器的功能特点,可编程序控制器定名为Programmable Logic Controller(PLC)。 20世纪70年代中末期,可编程控制器进入实用化发展阶段,计算机技术已全面引入可编程控制器中,使其功能发生了飞跃。 更高的运算速度、超小型体积、更可靠的工业抗干扰设计、模拟量运算、PID功能及极高的性价比奠定了它在现代工业中的地位。 20世纪80年代初,可编程控制器在先进工业国家中已获得广泛应用。 这个时期可编程控制器发展的特点是大规模、高速度、高性能、产品系列化。 这个阶段的另一个特点是世界上生产可编程控制器的国家日益增多,产量日益上升。 这标志着可编程控制器已步入成熟阶段。 上世纪80年代至90年代中期,是PLC发展最快的时期,年增长率一直保持为30~40%。 在这时期,PLC在处理模拟量能力、数字运算能力、人机接口能力和网络能力得到大幅度提高,PLC逐渐进入过程控制领域,在某些应用上取代了在过程控制领域处于统治地位的DCS系统。 20世纪末期,可编程控制器的发展特点是更加适应于现代工业的需要。 从控制规模上来说,这个时期发展了大型机和超小型机;从控制能力上来说,诞生了各种各样的特殊功能单元,用于压力、温度、转速、位移等各式各样的控制场合;从产品的配套能力来说,生产了各种人机界面单元、通信单元,使应用可编程控制器的工业控制设备的配套更加容易。 目前,可编程控制器在机械制造、石油化工、冶金钢铁、汽车、轻工业等领域的应用都得到了长足的发展。 我国可编程控制器的引进、应用、研制、生产是伴随着改革开放开始的。 最初是在引进设备中大量使用了可编程控制器。 接下来在各种企业的生产设备及产品中不断扩大了PLC的应用。 目前,我国自己已可以生产中小型可编程控制器。 上海东屋电气有限公司生产的CF系列、杭州机床电器厂生产的DKK及D系列、大连组合机床研究所生产的S系列、苏州电子计算机厂生产的YZ系列等多种产品已具备了一定的规模并在工业产品中获得了应用。 此外,无锡华光公司、上海乡岛公司等中外合资企业也是我国比较著名的PLC生产厂家。 可以预期,随着我国现代化进程的深入,PLC在我国将有更广阔的应用天地。 6. PLC未来展望 21世纪,PLC会有更大的发展。 从技术上看,计算机技术的新成果会更多地应用于可编程控制器的设计和制造上,会有运算速度更快、存储容量更大、智能更强的品种出现;从产品规模上看,会进一步向超小型及超大型方向发展;从产品的配套性上看,产品的品种会更丰富、规格更齐全,完美的人机界面、完备的通信设备会更好地适应各种工业控制场合的需求;从市场上看,各国各自生产多品种产品的情况会随着国际竞争的加剧而打破,会出现少数几个品牌垄断国际市场的局面,会出现国际通用的编程语言;从网络的发展情况来看,可编程控制器和其它工业控制计算机组网构成大型的控制系统是可编程控制器技术的发展方向。 目前的计算机集散控制系统DCS(Distributed Control System)中已有大量的可编程控制器应用。 伴随着计算机网络的发展,可编程控制器作为自动化控制网络和国际通用网络的重要组成部分,将在工业及工业以外的众多领域发挥越来越大的作用。 1.2 PLC的构成 从结构上分,PLC分为固定式和组合式(模块式)两种。 固定式PLC包括CPU板、I/O板、显示面板、内存块、电源等,这些元素组合成一个不可拆卸的整体。 模块式PLC包括CPU模块、I/O模块、内存、电源模块、底板或机架,这些模块可以按照一定规则组合配置。 1.3 CPU的构成 CPU是PLC的核心,起神经中枢的作用,每套PLC至少有一个CPU,它按PLC的系统程序赋予的功能接收并存贮用户程序和数据,用扫描的方式采集由现场输入装置送来的状态或数据,并存入规定的寄存器中,同时,诊断电源和PLC内部电路的工作状态和编程过程中的语法错误等。 进入运行后,从用户程序存贮器中逐条读取指令,经分析后再按指令规定的任务产生相应的控制信号,去指挥有关的控制电路。 CPU主要由运算器、控制器、寄存器及实现它们之间联系的数据、控制及状态总线构成,CPU单元还包括外围芯片、总线接口及有关电路。 内存主要用于存储程序及数据,是PLC不可缺少的组成单元。 在使用者看来,不必要详细分析CPU的内部电路,但对各部分的工作机制还是应有足够的理解。 CPU的控制器控制CPU工作,由它读取指令、解释指令及执行指令。 但工作节奏由震荡信号控制。 运算器用于进行数字或逻辑运算,在控制器指挥下工作。 寄存器参与运算,并存储运算的中间结果,它也是在控制器指挥下工作。 CPU速度和内存容量是PLC的重要参数,它们决定着PLC的工作速度,IO数量及软件容量等,因此限制着控制规模。 1.4 I/O模块 PLC与电气回路的接口,是通过输入输出部分(I/O)完成的。 I/O模块集成了PLC的I/O电路,其输入暂存器反映输入信号状态,输出点反映输出锁存器状态。 输入模块将电信号变换成数字信号进入PLC系统,输出模块相反。 I/O分为开关量输入(DI),开关量输出(DO),模拟量输入(AI),模拟量输出(AO)等模块。 常用的I/O分类如下: 开关量:按电压水平分,有220VAC、110VAC、24VDC,按隔离方式分,有继电器隔离和晶体管隔离。 模拟量:按信号类型分,有电流型(4-20mA,0-20mA)、电压型(0-10V,0-5V,-10-10V)等,按精度分,有12bit,14bit,16bit等。 除了上述通用IO外,还有特殊IO模块,如热电阻、热电偶、脉冲等模块。 按I/O点数确定模块规格及数量,I/O模块可多可少,但其最大数受CPU所能管理的基本配置的能力,即受最大的底板或机架槽数限制。 1.5 电源模块 PLC电源用于为PLC各模块的集成电路提供工作电源。 同时,有的还为输入电路提供24V的工作电源。 电源输入类型有:交流电源(220VAC或110VAC),直流电源(常用的为24VDC)。 1.6 底板或机架 大多数模块式PLC使用底板或机架,其作用是:电气上,实现各模块间的联系,使CPU能访问底板上的所有模块,机械上,实现各模块间的连接,使各模块构成一个整体。 1.7 PLC系统的其它设备 1.7.1 编程设备:编程器是PLC开发应用、监测运行、检查维护不可缺少的器件,用于编程、对系统作一些设定、监控PLC及PLC所控制的系统的工作状况,但它不直接参与现场控制运行。 小编程器PLC一般有手持型编程器,目前一般由计算机(运行编程软件)充当编程器。 也就是我们系统的上位机。 1.7.2 人机界面:最简单的人机界面是指示灯和按钮,目前液晶屏(或触摸屏)式的一体式操作员终端应用越来越广泛,由计算机(运行组态软件)充当人机界面非常普及。 1.8 PLC的通信联网 依靠先进的工业网络技术可以迅速有效地收集、传送生产和管理数据。 因此,网络在自动化系统集成工程中的重要性越来越显著,甚至有人提出网络就是控制器的观点说法。 PLC具有通信联网的功能,它使PLC与PLC 之间、PLC与上位计算机以及其他智能设备之间能够交换信息,形成一个统一的整体,实现分散集中控制。 多数PLC具有RS-232接口,还有一些内置有支持各自通信协议的接口。 PLC的通信现在主要采用通过多点接口(MPI)的数据通讯、PROFIBUS 或工业以太网进行联网。 2 PLC控制系统的设计基本原则 2.1 最大限度的满足被控对象的控制要求。 2.2 在满足控制要求的前提下,力求使控制系统简单、经济、使用和维护方便。 2.3 保证控制系统安全可靠。 2.4 考虑到生产的发展和工艺的改进在选择PLC容量时应适当留有余量。 3 PLC软件系统及常用编程语言 3.1 PLC软件系统由系统程序和用户程序两部分组成。 系统程序包括监控程序、编译程序、诊断程序等,主要用于管理全机、将程序语言翻译成机器语言,诊断机器故障。 系统软件由PLC厂家提供并已固化在EPROM中,不能直接存取和干预。 用户程序是用户根据现场控制要求,用PLC的程序语言编制的应用程序(也就是逻辑控制)用来实现各种控制。 STEP7是用于SIMATIC可编程逻辑控制器组态和编程的标准软件包,也就是用户程序,我们就是使用STEP7来进行硬件组态和逻辑程序编制,以及逻辑程序执行结果的在线监视。 3.2 PLC提供的编程语言 3.2.1 标准语言梯形图语言也是我们最常用的一种语言,它有以下特点 3.2.1.1 它是一种图形语言,沿用传统控制图中的继电器触点、线圈、串联等术语和一些图形符号构成,左右的竖线称为左右母线。 3.2.1.2 梯形图中接点(触点)只有常开和常闭,接点可以是PLC输入点接的开关也可以是PLC内部继电器的接点或内部寄存器、计数器等的状态。 3.2.1.3 梯形图中的接点可以任意串、并联,但线圈只能并联不能串联。 3.2.1.4 内部继电器、计数器、寄存器等均不能直接控制外部负载,只能做中间结果供CPU内部使用。 3.2.1.5 PLC是按循环扫描事件,沿梯形图先后顺序执行,在同一扫描周期中的结果留在输出状态暂存器中所以输出点的值在用户程序中可以当做条件使用。 3.2.2 语句表语言,类似于汇编语言。 3.2.3 逻辑功能图语言,沿用半导体逻辑框图来表达,一般一个运算框表示一个功能左边画输入、右边画输出。 4 STEP7程序的使用 4.1 创建一个项目结构,项目就象一个文件夹,所有数据都以分层的结构存在于其中,任何时候你都可以使用。 在创建一个项目之后,所有其他任务都在这个项目下执行。 4.2 组态一个站,组态一个站就是指定你要使用的可编程控制器,例如S7300、S7400等。 4.3 组态硬件,组态硬件就是在组态表中指定你的控制方案所要使用的模板以及在用户程序中以什么样的地址来访问这些模板,地址一般不用修改由程序自动生成。 模板的特性也可以用参数进行赋值。 4.4 组态网络和通讯连接,通讯的基础是预先组态网络,也就是要创建一个满足你的控制方案的子网,设置网络特性、设置网络连接特性以及任何联网的站所需要的连接。 网络地址也是程序自动生成如果没有更改经验一定不要修改。 4.5 定义符号,可以在符号表中定义局部或共享符号,在你的用户程序中用这些更具描述性的符号名替代绝对地址。 符号的命名一般用字母编写不超过8个字节,最好不要使用很长的汉字进行描述,否则对程序的执行有很大的影响。 4.6 创建程序,用梯形图编程语言创建一个与模板相连结或与模板无关的程序并存储。 创建程序是我们控制工程的重要工作之一,一般可以采用线形编程(基于一个块内,OB1)、分布编程(编写功能块FB,OB1组织调用)、结构化编程(编写通用块)。 我们最常采用的是结构化编程和分布编程配合使用,很少采用线形编程。 4.7 下载程序到可编程控制器,完成所有的组态、参数赋值和编程任务之后,可以下载整个用户程序到可编程控制器。 在下载程序时可编程控制器必须在允许下载的工作模式下(STOP或RUN-P), RUN-P模式表示,这个程序将一次下载一个块,如果重写一个旧的CPU程序就可能出现冲突,所以一般在下载前将CPU切换到STOP模式。 5 WINCC程序的使用 5.1 简介,WINCC是在生产和过程自动化中解决可视化和控制任务的工业技术中性系统。 具有控制自动化过程的强大功能,是基于个人计算机的操作监视系统,它很容易结合标准的和用户的程序建立人机界面精确的满足生产实际要求。 WINCC有两个版本RC版(具有组态和开发环境)、RT版(只有运行环境),我们一般使用的是RC版。 5.2 WINCC简单使用步骤 5.2.1 变量管理,首先确定通讯方式安装驱动程序,然后定义内部变量和外部变量,外部变量是受你买的WINCC软件授权限制的最大授权64K字节,内部变量没有限制。 5.2.2 画面生成,进入图形编辑器,图形编辑器是一种用于创建过程画面的面向矢量的作图程序。 也可以使用包含在对象和样式库中的众多的图形对象来创建复杂的过程画面。 可以通过动作编程将动态添加到单个图形对象上。 5.2.3 报警记录设置,报警记录提供了显示和操作选项来获取和归档结果。 可以任意地选择消息块、消息级别、消息类型、消息显示以及报表。 为了在运行中显示消息,可以使用包含在图形编辑器中的对象库中的报警控件。 5.2.4 变量记录,变量记录是用来从运行过程中采集数据并准备将它们显示和归档。 5.2.5 报表组态,报表组态是通过报表编辑器来实现的。 是为消息、操作、归档内容和当前或已归档的数据定时器或事件控制文档的集成的报表系统,可以自由选择用户报表的形式。 5.2.6 全局脚本的应用,全局脚本就是C语言函数和动作的通称,根据不同的类型脚本被用于给对象组态动作并通过系统内部C语言编译器来处理。 全局脚本动作用于过程执行的运行中。 一个触发可以开始这些动作的执行。 5.2.7 用户管理器设置,用户管理器用于分配和控制用户的单个组态和运行系统编辑器的访问权限。 每建立一个用户,就设置了WINCC功能的访问权利并独立的分配给此用户。 至多可分配999个不同的授权。 5.2.8 交叉表索引,交叉索引用于为对象寻找和显示所有使用处,例如变量、画面和函数等。 使用“链接”功能可以改变变量名称而不会导致组态不一致

什么是PID调节及PID调节的基本原理?

PID调节概念及基本原理目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。 同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。 智能控制的典型实例是模糊全自动洗衣机等。 自动控制系统可分为开环控制系统和闭环控制系统。 一个控制系统包括控制器、传感器、变送器、执行机构、输入输出接口。 控制器的输出经过输出接口、执行机构,加到被控系统上;控制系统的被控量,经过传感器,变送器,通过输入接口送到控制器。 不同的控制系统,其传感器、变送器、执行机构是不一样的。 比如压力控制系统要采用压力传感器。 电加热控制系统的传感器是温度传感器。 目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器(intelligent regulator),其中PID控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。 有利用PID控制实现的压力、温度、流量、液位控制器,能实现PID控制功能的可编程控制器(PLC),还有可实现PID控制的PC系统等等。 可编程控制器(PLC)是利用其闭环控制模块来实现PID控制,而可编程控制器(PLC)可以直接与ControlNet相连,如Rockwell的PLC-5等。 还有可以实现PID控制功能的控制器,如Rockwell 的Logix产品系列,它可以直接与ControlNet相连,利用网络来实现其远程控制功能。 1、开环控制系统开环控制系统(open-loop control system)是指被控对象的输出(被控制量)对控制器(controller)的输出没有影响。 在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。 2、闭环控制系统闭环控制系统(closed-loop control system)的特点是系统被控对象的输出(被控制量)会反送回来影响控制器的输出,形成一个或多个闭环。 闭环控制系统有正反馈和负反馈,若反馈信号与系统给定值信号相反,则称为负反馈( Negative Feedback),若极性相同,则称为正反馈,一般闭环控制系统均采用负反馈,又称负反馈控制系统。 闭环控制系统的例子很多。 比如人就是一个具有负反馈的闭环控制系统,眼睛便是传感器,充当反馈,人体系统能通过不断的修正最后作出各种正确的动作。 如果没有眼睛,就没有了反馈回路,也就成了一个开环控制系统。 另例,当一台真正的全自动洗衣机具有能连续检查衣物是否洗净,并在洗净之后能自动切断电源,它就是一个闭环控制系统。 3、阶跃响应阶跃响应是指将一个阶跃输入(step function)加到系统上时,系统的输出。 稳态误差是指系统的响应进入稳态后,系统的期望输出与实际输出之差。 控制系统的性能可以用稳、准、快三个字来描述。 稳是指系统的稳定性(stability),一个系统要能正常工作,首先必须是稳定的,从阶跃响应上看应该是收敛的;准是指控制系统的准确性、控制精度,通常用稳态误差来(Steady-state error)描述,它表示系统输出稳态值与期望值之差;快是指控制系统响应的快速性,通常用上升时间来定量描述。 4、PID控制的原理和特点在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。 PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。 当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。 即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。 PID控制,实际中也有PI和PD控制。 PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。 (1)比例(P)控制比例控制是一种最简单的控制方式。 其控制器的输出与输入误差信号成比例关系。 当仅有比例控制时系统输出存在稳态误差(Steady-state error)。 (2)积分(I)控制在积分控制中,控制器的输出与输入误差信号的积分成正比关系。 对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。 为了消除稳态误差,在控制器中必须引入“积分项”。 积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。 这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。 因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。 (3)微分(D)控制在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。 自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。 其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。 解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。 这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。 所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。 5、PID控制器的参数整定PID控制器的参数整定是控制系统设计的核心内容。 它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。 PID控制器参数整定的方法很多,概括起来有两大类:一是理论计算整定法。 它主要是依据系统的数学模型,经过理论计算确定控制器参数。 这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。 二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。 PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。 三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。 但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。 现在一般采用的是临界比例法。 利用该方法进行 PID控制器参数的整定步骤如下:(1)首先预选择一个足够短的采样周期让系统工作;(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期;(3)在一定的控制度下通过公式计算得到PID控制器的参数。 PID参数如何设定调节PID就是比例微积分调节,具体你可以参照自动控制课程里有详细介绍!正作用与反作用在温控里就是当正作用时是加热,反作用是制冷控制。 PID控制简介目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。 同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。 智能控制的典型实例是模糊全自动洗衣机等 。 自动控制系统可分为开环控制系统和闭环控制系统。 一个控控制系统包括控制器、传感器、变送器、执行机构、输入输出接口。 控制器的输出经过输出接口、执行机构,加到被控系统上;控制系统的被控量,经过传感器,变送器,通过输入接口送到控制器。 不同的控制系统,其传感器、变送器、执行机构是不一样的。 比如压力控制系统要采用压力传感器。 电加热控制系统的传感器是温度传感器。 目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器(intelligent regulator),其中PID控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。 有利用PID控制实现的压力、温度、流量、液位控制器,能实现PID控制功能的可编程控制器(PLC),还有可实现PID控制的PC系统等等。 可编程控制器(PLC)是利用其闭环控制模块来实现PID控制,而可编程控制器(PLC)可以直接与ControlNet相连,如Rockwell的PLC-5等。 还有可以实现PID 控制功能的控制器,如Rockwell 的Logix产品系列,它可以直接与ControlNet相连,利用网络来实现其远程控制功能。 1、开环控制系统开环控制系统(open-loop control system)是指被控对象的输出(被控制量)对控制器(controller)的输出没有影响。 在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。 2、闭环控制系统闭环控制系统(closed-loop control system)的特点是系统被控对象的输出(被控制量)会反送回来影响控制器的输出,形成一个或多个闭环。 闭环控制系统有正反馈和负反馈,若反馈信号与系统给定值信号相反,则称为负反馈( Negative Feedback),若极性相同,则称为正反馈,一般闭环控制系统均采用负反馈,又称负反馈控制系统。 闭环控制系统的例子很多。 比如人就是一个具有负反馈的闭环控制系统,眼睛便是传感器,充当反馈,人体系统能通过不断的修正最后作出各种正确的动作。 如果没有眼睛,就没有了反馈回路,也就成了一个开环控制系统。 另例,当一台真正的全自动洗衣机具有能连续检查衣物是否洗净,并在洗净之后能自动切断电源,它就是一个闭环控制系统。 3、阶跃响应 阶跃响应是指将一个阶跃输入(step function)加到系统上时,系统的输出。 稳态误差是指系统的响应进入稳态后,系统的期望输出与实际输出之差。 控制系统的性能可以用稳、准、快三个字来描述。 稳是指系统的稳定性(stability),一个系统要能正常工作,首先必须是稳定的,从阶跃响应上看应该是收敛的;准是指控制系统的准确性、控制精度,通常用稳态误差来(Steady-state error) 描述,它表示系统输出稳态值与期望值之差;快是指控制系统响应的快速性,通常用上升时间来定量描述。 4、PID控制的原理和特点 在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。 PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。 当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。 即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。 PID控制,实际中也有PI和PD控制。 PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。 比例(P)控制 比例控制是一种最简单的控制方式。 其控制器的输出与输入误差信号成比例关系。 当仅有比例控制时系统输出存在稳态误差(Steady-state error)。 积分(I)控制 在积分控制中,控制器的输出与输入误差信号的积分成正比关系。 对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。 为了消除稳态误差,在控制器中必须引入“积分项”。 积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。 这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。 因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。 微分(D)控制 在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。 自动控制系统在克服误差的调节过程中可能会 出现振荡甚至失稳。 其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。 解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。 这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。 所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。 5、PID控制器的参数整定 PID控制器的参数整定是控制系统设计的核心内容。 它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。 PID控制器参数整定的方法很多,概括起来有两大类:一是理论计算整定法。 它主要是依据系统的数学模型,经过理论计算确定控制器参数。 这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。 二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。 PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。 三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。 但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。 现在一般采用的是临界比例法。 利用该方法进行PID控制器参数的整定步骤如下:(1)首先预选择一个足够短的采样周期让系统工作;(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期;(3)在一定的控制度下通过公式计算得到PID控制器的参数。 PID参数的设定:是靠经验及工艺的熟悉,参考测量值跟踪与设定值曲线,从而调整P\I\D的大小。 PID控制器参数的工程整定,各种调节系统中P.I.D参数经验数据以下可参照:温度T: P=20~60%,T=180~600s,D=3-180s压力P: P=30~70%,T=24~180s,液位L: P=20~80%,T=60~300s,流量L: P=40~100%,T=6~60s。 书上的常用口诀:参数整定找最佳,从小到大顺序查先是比例后积分,最后再把微分加曲线振荡很频繁,比例度盘要放大曲线漂浮绕大湾,比例度盘往小扳曲线偏离回复慢,积分时间往下降曲线波动周期长,积分时间再加长曲线振荡频率快,先把微分降下来动差大来波动慢。 微分时间应加长理想曲线两个波,前高后低4比1一看二调多分析,调节质量不会低这里介绍一种经验法。 这种方法实质上是一种试凑法,它是在生产实践中总结出来的行之有效的方法,并在现场中得到了广泛的应用。 这种方法的基本程序是先根据运行经验,确定一组调节器参数,并将系统投入闭环运行,然后人为地加入阶跃扰动(如改变调节器的给定值),观察被调量或调节器输出的阶跃响应曲线。 若认为控制质量不满意,则根据各整定参数对控制过程的影响改变调节器参数。 这样反复试验,直到满意为止。 经验法简单可靠,但需要有一定现场运行经验,整定时易带有主观片面性。 当采用PID调节器时,有多个整定参数,反复试凑的次数增多,不易得到最佳整定参数。 下面以PID调节器为例,具体说明经验法的整定步骤: ⑴让调节器参数积分系数S0=0,实际微分系数k=0,控制系统投入闭环运行,由小到大改变比例系数S1,让扰动信号作阶跃变化,观察控制过程,直到获得满意的控制过程为止。 ⑵取比例系数S1为当前的值乘以0.83,由小到大增加积分系数S0,同样让扰动信号作阶跃变化,直至求得满意的控制过程。 (3)积分系数S0保持不变,改变比例系数S1,观察控制过程有无改善,如有改善则继续调整,直到满意为止。 否则,将原比例系数S1增大一些,再调整积分系数S0,力求改善控制过程。 如此反复试凑,直到找到满意的比例系数S1和积分系数S0为止。 ⑷引入适当的实际微分系数k和实际微分时间TD,此时可适当增大比例系数S1和积分系数S0。 和前述步骤相同,微分时间的整定也需反复调整,直到控制过程满意为止。 注意:仿真系统所采用的PID调节器与传统的工业 PID调节器有所不同,各个参数之间相互隔离,互不影响,因而用其观察调节规律十分方便。 PID参数是根据控制对象的惯量来确定的。 大惯量如:大烘房的温度控制,一般P可在10以上,I=3-10,D=1左右。 小惯量如:一个小电机带 一水泵进行压力闭环控制,一般只用PI控制。 P=1-10,I=0.1-1,D=0,这些要在现场调试时进行修正的。 我提供一种增量式PID供大家参考△U(k)=Ae(k)-Be(k-1)+Ce(k-2)A=Kp(1+T/Ti+Td/T)B=Kp(1+2Td/T)C=KpTd/TT采样周期 Td微分时间 Ti积分时间用上面的算法可以构造自己的PID算法。 U(K)=U(K-1)+△U(K)

plc毕业论文设计

PLC的自动送料小车摘 要可编程序控制器(Programmable controller)简称PLC,由于PLC的可靠性高、环境适应性强、灵活通用、使用方便、维护简单,所以PLC的应用领域在迅速扩大。 对早期的PLC,凡是有继电器的地方,都可采用。 而对当今的PLC几乎可以说凡是需要控制系统存在的地方就需要PLC。 尤其是近几年来,PLC的成本下降,功能又不段增强,所以,目前PLC在国内外已被广泛应用于各个行业。 本设计是为了实现送料小车的手动和自动化的转化,改变以往小车的单纯手动送料,减少了劳动力,提高了生产效率,实现了自动化生产!而且本送料小车的设计是由于工作环境恶劣,不允许人进入工作环境的情况下孕育而成的。 本文从第一章送料小车的系统方案的确定为切入点,介绍了为什么选用PLC控制小车;第二章介绍了送料小车的应达到的控制要求;第三章根据控制要求进行了小车系统的具体设计,包括端子接线图、梯形图(分段设计说明和系统总梯形图)和程序指令设计;最后得出结论。 关键词:PLC,送料小车,控制,程序设计目 录前 言1第1章 控制系统介绍和控制过程要求21.1 控制系统在送料小车中的作用与地位21.2 控制系统介绍2第2章 送料小车系统方案的选择42.1 可编程控制器 PLC的优点42.2 小车送料系统方案的选择5第3章 基于PLC的送料小车接线图及梯形图63.1 送料小车PLC的 I/O分配表63.2 PLC端子接线图73.3 梯形图分段设计83.4 程序运行原理说明调试与完善133.5 系统总梯形图设计133.6 小车程序设计18结 论23谢 辞24参考文献25前 言随着社会迅速的发展,各机械产品层出不穷。 控制系统的发展已经很成熟,应用范围涉及各个领域,例如:机械、汽车制造、化工、交通、军事、民用等。 PLC专为工业环境应用而设计,其显著的特点之一就是可靠性高,抗干扰能力强。 PLC的应用不但大大地提高了电气控制系统的可靠性和抗干扰能力,而且大大地简化和减少了维修维护的工作量。 PLC以其可靠性高、抗干扰能力强、编程简单、使用方便、控制程序可变、体积小、质量轻、功能强和价格低廉等特点 ,在机械制造、冶金等领域得到了广泛的应用。 送料小车控制系统采用了PLC控制。 从送料小车的工艺流程来看,其控制系统属于自动控制与手动控制相结合的系统,因此,此送料小车电气控制系统设计具有手动和自动两种工作方式。 我在程序设计上采用了模块化的设计方法,这样就省去了工作方式程序之间复杂的联锁关系,从而在设计和修改任何一种工作方式的程序时,不会对其它工作方式的程序造成影响,使得程序的设计、修改和故障查找工作大为简化。 在设计该PLC送料小车设计程序的同时总结了以往PLC送料小车设计程序的一般方法、步骤,并且把以前学过的基础课程融汇到本次设计当中来,更加深入的了解了更多的PLC知识。 第1章 控制系统介绍和控制过程要求1.1 控制系统在送料小车中的作用与地位在现代化工业生产中,为了提高劳动生产率,降低成本,减轻工人的劳动负担,要求整个工艺生产过程全盘自动化,这就离不开控制系统。 控制系统是整个生产线的灵魂,对整个生产线起着指挥的作用。 一旦控制系统出现故障,轻者影响生产线的继续进行,重者甚至发生人身安全事故,这样将给企业造成重大损失。 送料小车是基于PLC控制系统来设计的,控制系统的每一步动作都直接作用于送料小车的运行,因此,送料小车性能的好坏与控制系统性能的好坏有着直接的关系。 送料小车能否正常运行、工作效率的高低都与控制系统密不可分。 1.2 控制系统介绍图1-1 送料小车本控制系统只要是用于控制送料小车的自动送料。 它既能减轻人的劳动强度又能自动准确到达人不能达到或很难到达的预定位置。 如图1-1,推车机可以沿轨道上下移动,到达预定位置。 推车机上是一个小型泵站,通过控制电磁阀换向,使两油缸伸出、缩回,顶出送料小车,再由各个仓位控制要料。 用PLC对送料小车实现控制,其具体要求如下:(1) 送料小车1动作要求:送料小车负责向四个料仓送料,送料路上从左向右共有4个料仓(位置开关SQ1,SQ2,SQ3,SQ4)分别受PLC的I0.0,I0.1,I0.2,I0.3检测,当信号状态为1是,说明运料小车到达该位置。 小车行走受两个信号的驱动,Q0.4驱动小车左行,Q0.5驱动小车右行。 料仓要料由4个手动按钮(SB1,SB2,SB3,SB4)发出(对应于PLC为I0.4,I0.5,I0.6,I0.7)按钮发出信号其相应指示灯就亮(HL1-HL4),指示灯受PLC的Q0.0-Q0.3控制。 送料小车2动作要求:送料小车负责向四个料仓送料,送料路上从左向右共有4个料仓(位置开关SQ11,SQ12,SQ13,SQ14)分别受PLC的I1.0,I1.1,I1.2,I1.3检测,当信号状态为1是,说明运料小车到达该位置。 小车行走受两个信号的驱动,Q1.5驱动小车左行,Q1.4驱动小车右行。 料仓要料由4个手动按钮(SB11,SB12,SB13,SB14)发出(对应于PLC为I1.4,I1.5,I1.6,I1.7)按钮发出信号其相应指示灯就亮(HL11-HL14),指示灯受PLC的Q1.0-Q1.3控制。 (2)运料小车行走条件:运料小车右行条件:小车在1,2,3号仓位,4号仓要料;小车在1,2号仓位,3号仓要料;小车在1号仓位,2号仓要料。 运料小车左行条件:小车在4,3,2,0号仓位,1号仓要料;小车在4,3,0号仓位,2号仓要料;小车在4,0号仓位,3号仓要料;小车在0位,4号仓位要料。 运料小车停止条件:要料仓位与小车的车位相同时,应该是小车的停止条件。 运料小车的互锁条件:小车右行时不允许左行启动,同样小车左行时也不允许右行启动。 第2章 送料小车系统方案的选择2.1 可编程控制器 PLC的优点可编程控制器 PLC对用户来说,是一种无触点设备,改变程序即可改变生产工艺。 目前,可编程控制器已成为工厂自动化的强有力工具,得到了广泛的推广应用。 可编程控制器是面向用户的专用工业控制计算机,具有许多明显的特点。 1. 可靠性高,抗干扰能力强高可靠性是电气控制设备的关键性能。 PLC由于采用现代大规模集成电路技术,采用严格的生产工艺制造,内部电路采取了先进的抗干扰技术,具有很高的可靠性。 例如西门子公司生产的S7系列PLC平均无故障时间高达30万小时。 一些使用冗余CPU的PLC的平均无故障工作时间则更长。 从PLC的机外电路来说,使用PLC构成控制系统,和同等规模的继电器系统相比,电气接线及开关接点已减少到数百甚至数千分之一,故障也就大大降低。 此外,PLC带有硬件故障自我检测功能,出现故障时可及时发出警报信息。 在应用软件中,应用者还可以编入外围器件的故障自诊断程序,使系统中除PLC以外的电路及设备也获得故障自诊断保护。 这样,整个系统具有极高的可靠性也就不奇怪了。 2. 配套齐全,功能完善,适用性强PLC发展到今天,已经形成了大、中、小各种规模的系列化产品。 可以用于各种规模的工业控制场合。 除了逻辑处理功能以外,现代PLC大多具有完善的数据运算能力,可用于各种数字控制领域。 近年来PLC的功能单元大量涌现,使PLC渗透到了位置控制、温度控制、CNC等各种工业控制中。 加上PLC通信能力的增强及人机界面技术的发展,使用PLC组成各种控制系统变得非常容易。 3. 易学易用,深受工程技术人员欢迎PLC作为通用工业控制计算机,是面向工矿企业的工控设备。 它接口容易,编程语言易于为工程技术人员接受。 梯形图语言的图形符号与表达方式和继电器电路图相当接近,只用PLC的少量开关量逻辑控制指令就可以方便地实现继电器电路的功能。 为不熟悉电子电路、不懂计算机原理和汇编语言的人使用计算机从事工业控制打开了方便之门。 4. 系统的设计、建造工作量小,维护方便,容易改造PLC用存储逻辑代替接线逻辑,大大减少了控制设备外部的接线,使控制系统设计及建造的周期大为缩短,同时维护也变得容易起来。 更重要的是使同一设备经过改变程序改变生产过程成为可能。 这很适合多品种、小批量的生产场合。 5. 体积小,重量轻,能耗低以超小型PLC为例,新近出产的品种底部尺寸小于100 mm,重量小于150 g,功耗仅数瓦。 由于体积小,很容易装入机械内部,是实现机电一体化的理想控制设备。 2.2 小车送料系统方案的选择实现小车送料系统控制有很多方法来实现,可以用单片机、可编程控制器PLC等元器件来实现。 但在单片机控制系统电路中需要加入A/D,D/A转换器,线路复杂,还要分配大量的中断口地址。 而且单片机控制电路易受外界环境的干扰,也具有不稳定性。 另外控制程序需要具有一定编程能力的人才能编译出,在维修时也需要高技术的人员才能修复,所以在此也不易用单片机来实现。 而从上述第一节对PLC的特点了解可知,PLC具有很多优点,因此我们归纳出:可编程控制器PLC具有很高的可靠性,通常的平均无故障时间都在30万小时以上;安装,操作和维护也较容易;编程简单,PLC的基本指令不多,编程器使用比较方便,程序设计和产品调试周期短,具有很好的经济效益。 此外PLC内部定时、计数资源丰富,可以方便地实现对送料小车的控制。 因此,最终我选择了用可编程控制器PLC来实现送料小车系统的控制,完成本次的设计题目。 第3章 基于PLC的送料小车接线图及梯形图3.1 送料小车PLC的 I/O分配表输入点分配输出点分配输入接点输入开关名称输出接口驱动设备I0.0-I0.3小车1行程开关(SQ1-SQ4)Q0.0-Q0.3小车1要料指示灯(HL1-HL4)I0.4-I0.7小车1控制按钮(SB1-SB4)Q0.4-Q0.5小车1左右行线圈I1.0-I1.3小车2行程开关(SQ11-SQ14)Q0.6-Q0.7油缸1伸出缩回线圈I1.4-1.7小车2控制按钮(SB11-SB14)Q1.0-Q1.0小车2要料指示灯(HL11-HL14)I2.0-I2.5推车机行程开关(SQ5-SQ10)Q1.4-Q1.5小车2左右行线圈I2.6-I2.7起动,停止按钮(SB5,SB6)Q1.6-Q1.7油缸2伸出缩回线圈I3.0-I3.1手动,连续转换开关(SA6,SA7)Q2.0-Q2.1推车机上下行线圈I3.2-I3.3推车机上下,左右转换开关 (SA1,SA2)I3.4-I3.6油缸单动联动转换开关(SA3-SA5)3-1 I/O分配表根据控制要求,PLC控制送料小车的输入\输出(I\0)地址编排如下表所示,其中SB5为启动开关,为SB6停止开关,SA6、SA7为手动\连续选择开关,SA1、SA2为上下、左右转换开关,SA3、SA4、SA5为油缸单动联动转换开关。 Q0.0-Q0.3和Q1.0-Q1.3控制8个要料指示灯,Q0.4-Q0.5和Q1.4-Q1.5控制小车1、2左行右行,Q0.6-Q0.7和Q1.6-Q1.7。 如表3-1所示:3.2 PLC端子接线图PLC型号的选择:由于该系统是在原来CPU226的基础上改进的设备,而现在共用了31个输入,用直流24V;18个输出,用交流电220V,所以我选择用S7-200系列CPU226,加一个EM223的扩展模块。 CPU226的主要的技术参数:输入24VDC,24点;输出220VAC,16点;电源电压为AC100—240V50/60Hz。 EM223的主要技术参数:输入24VDC,8点;输出220VAC,8点;电源电压为AC100—240V50/60Hz。 如图3-1所示:图3-1 端子接线图3.3 梯形图分段设计本次设计的自动送料小车梯形图,是分开来画的。 由总程序结构图、自动操作程序图、手动操作程序图、小车1左右自动送料运行程序图、小车2左右自动送料运行程序图组成。 图3-2 总系统结构图(1)程序的总结构图如图3-2所示:因为在手动操作方式下,各种动作都是用按钮控制来实现的,其程序可独立于自动操作程序而另行设计。 因此,总程序可分为两段独立的部分:手动操作程序和自动操作程序。 当选择手动操作时,则输入点I3.0接通,其常闭触点断开,执行手动程序,并由于I3.1的常闭触点为闭合,则跳过自动程序。 若选择自动操作方式,将跳过手动程序段而执行自动程序。 (2)自动程序设计,自动操作控制主要是由行程开关来控制推车机的上行、下行,两缸的伸出、缩回。 通过行程开关的上限、下限、左限、右限准确的控制推车机到达预定位置。 自动程序时,手动自动转换开关拨到连续档SA7,按下启动按钮SB6,推车机上行,碰到上位行车开关SQ6,上行停止;同时两个油缸动作,推动两小车向左移动,小车1、2碰到左位行程开关SQ10、SQ5,说明两小车到位,这时各个仓位可向小车要料;而且两油缸缩回,碰到行程右位开关SQ8、SQ9停止收缩,推车机下行到行程开关位SQ7时停止。 如图3-3所示:图3-3 自动操作程序图(3)手动操作程序的设计,手动操作控制简单,可按照一般继电器控制系统的逻辑设计法来设计。 手动程序时,手动自动转换开关拨到手动档SA6,上下、左右转换开关拨到上/下行档时,按启动按钮SB5推车机上行,按停止按钮SB6推车机下行;上下、左右转换开关拨到左/右档时,拨动单动联动转换开关SA3(缸1动作),按启动按钮SB5,缸1伸出推动小车1左行;按停止按钮SB6,缸1缩回;拨动转换开关到SA5(缸2动作),按启动按钮SB5,缸2伸出推动小车2左行,按停止按钮SB6,缸2缩回;拨动单动联动转换开关到SA4(两缸同时动作)按启动按钮SB5,两缸伸出推动两小车左行;按停止按钮SB6,两缸缩回。 如图3-4所示:图3-4 手动操作程序图(4)小车1自动送料运行程序,把小车1送到指定位置后,四个仓位就可以向小车要料了,M0.0-M0.3分别代表小车1的1号料仓到4号料仓的要料状态,运料小车1当前所处位置由I0.0-I0.3,运料小车1的右行,左行,停止控制由Q0.4、Q0.5。 小车到位后,用上微分操作(P)来清除料仓要料状态信号及控制小车停车。 (上微分操作的注意事项,上微分脉冲只存在在一个扫描周期,接受这一脉冲控制的元件应写在这一脉冲出现的语句之后)。 小车1自动送料图如下图3-5所示:图3-5 小车1左右自动送料运行程序图(5)小车2自动送料运行程序,把小车2送到指定位置后,四个仓位就可以向小车要料了,M1.0-M1.3分别代表小车2的1号料仓到4号料仓的要料状态。 运料小车2当前所处位置由I1.0-I1.3,运料小车2的右行,左行,停止控制由Q1.4、Q1.5。 小车到位后,用上微分操作(P)来清除料仓要料状态信号及控制小车停车。 小车2自动送料图3-6所示:图3-6 小车2左右自动送料运行程序图3.4 程序运行原理说明调试与完善本程序是用梯形图所写的。 在运行前,先选择工作方式,手动/自动。 选择手动SA6时,把上/下、左/右转换开关旋转到上/下档SA1,按下SB5起动点动按钮,推车机上行,按下SB6停止点动按钮,推车机下行;把上/下、左/右转换开关旋转到左/右档SA2,再选择小车的单动、联动控制,小车1单动时把单动/联动转换开关旋转到单动档SA3,两小车联动时旋转到联动档SA4,小车2单动时旋转到单动档SA5,这时按下起动按钮SB5,油缸推动小车左行,按下停止按钮SB6,油缸缩回。 选择自动SA7时,按下起动按钮SB5,推车机开始上行,碰到上限行程开关SQ6时停车,两缸自动推出小车,小车碰到左限行程开关SQ5、SQ10时,说明小车到位,各个仓位可以向小车要料,这时两缸自动缩回,碰到右限行程开关SQ8、SQ9时,推车机自动下行,下行到位后(碰到SQ7)停车。 只有再次按下起动按钮SB5,才能再次运行。 手动程序中设置了联锁和保护电路。 如推车机的上行、下行常闭触点的联锁,推车机上下行行程有行程开关SQ6、SQ7控制保护。 自动程序是根据推车机的位置、油缸的位置来控制电路执行下一条指令的。 油缸把小车推到位后,小车处于准备送料的初始位置,这时1-4号仓位都可以向小车要料。 本设计中要料时刻不同时,先要料者优先,但是要料时刻相同时,却不知道小车向哪个仓位送料,需要改进。 3.5 系统总梯形图设计由以上,我们画出送料小车系统的总梯形图,其中包括推车机的手动控制程序、自动控制程序、送料小车1控制程序、送料小车2控制程序。 如下图3-7所示:图3-7送料小车梯形图(a) 图3-7 送料小车梯形图(b) 图3-7 送料小车梯形图(c) 图3-7 送料小车梯形图(d)3.6 小车程序设计由系统总梯形图,我们写出送料小车的程序指令,如下表3-2所示:表3-2 送料小车程序指令表LDNI3.0AI3.3JMP0AI2.6LDI3.2ANI2.4LPS=Q1.6AI2.6LDI2.4ANI2.0OM2.2=Q2.0ANI1.3LPP=M2.2AI2.7LDI3.4ANI2.1OM2.0=Q2.1AI3.3LDI3.5AI2.7=M2.0ANI2.2LDI3.4=Q0.7OM2.0LDI3.6AI3.3OM2.0AI3.3AI3.3AI2.6AI2.7ANI2.5ANI2.3=Q0.6=Q1.7LDI2.5LBL0OM2.1LDNI3.1ANI0.3JMP1=M2.1LDI2.6LDI3.6OQ2.0OM2.0ANI2.0ANQ2.1OQ1.7ANI2.7ANI2.3=Q2.0ANQ1.6LDI2.0ANI2.7OQ0.6=Q1.7ANI2.5LDI2.5ANQ0.7ANI2.4ANI2.7OQ2.1=Q0.6ANQ2.0LDI2.5ANI2.1OM2.1ANI2.7ANI0.3=Q2.1=M2.1LBL1LDI2.0LDI0.4OQ1.6ANM0.1ANI2.4ANM0.2ANQ1.7ANM0.3ANI2.7SM0.01=Q1.6SQ0.01LDI2.4LDI0.5OM2.2ANM0.0ANI1.3ANM0.2=M2.2ANM0.3LDI2.5SM0.11OQ0.7SQ0.11ANI2.2LDI0.6ANQ0.6ANM0.0ANI2.7ANM0.1=Q0.7ANM0.3LDI2.4SM0.21SQ0.21AI0.5LDI0.7OLDANM0.0ANQ0.5ANM0.1SQ0.4ANM0.2LDI0.3SM0.31OI0.2SQ0.31OI0.1LDI0.0OM2.1AM0.0AI0.4LDI0.1LDI0.3AM0.1OI0.2OLDOM2.1LDI0.2AI0.5AM0.2OLDOLDLDI0.3LDI0.3OM2.1AM0.3AI0.6OLDOLDEULDM2.1RQ0.06AI0.7RM0.04OLDLDI0.0ANQ0.4OI0.1SQ0.51OI0.2LDI1.4AI.7ANM1.1LDI0.0ANM1.2OI0.1ANM1.3AI0.6SM1.01OLDSQ1.01LDI0.0LDI1.5ANM1.0LDI1.0ANM1.2OI1.1ANM1.3OI1.2SM1.11AI1.7SQ1.11LDI1.0LDI1.6OI1.1ANM1.0AI1.6ANM1.1OLDANM1.3LDI1.0SM1.21AI1.5SQ1.21OLDLDI1.7ANQ1.5ANM1.0SQ1.41ANM1.1LDI1.3ANM1.2OI1.2SM1.31OI1.1SQ1.31OM2.2LDI1.0AI1.4AM1.0LDI1.3LDI1.1OI1.2AM1.1OM2.2OLDAI1.5LDI1.2OLDAM1.2LDI1.3OLDOM2.2LDI1.3AI1.6AM1.3OLDEULDM2.2RQ1.06AI1.7RM1.04OLDANQ1.4SQ1.51结 论在做这个设计中,我学会了很多以前没学过的知识,也巩固了很多以前没学好的知识,使我的专业理论知识更加扎实,软件操作更加熟练了。 做完这个设计后,我得出几个结论如下:一、送料小车在硬件设计中,加入了扩展模块,可以在触点不够的情况下方便地实现该小车的系统控制;然后软件设计中,运用了上微分指令,简化了程序,还运用了互锁和联锁,确保了系统的正常运行,减少了系统的故障点。 在送料小车的系统中加入了手动操作程序,便于设备的维修,方便操作人员操作。 二、该小车系统在实施的情况下,其成本价格比较高。 三、该小车控制系统的研究方向:由于本小车系统并不完善,只做了送料,没有设计小车怎么装料和小车到料仓后送料的多少。 这两方面是该系统设计的完善,是将来的研究方向。 最后,经过这次毕业设计培养了我们的设计能力以及全面的考虑问题能力。 学习的过程是痛苦的但是收获成功的喜悦更是让人激动的。 相信通过这次毕业设计它对我以后的学习及工作都会产生积极的影响。 谢 辞本论文是在余炳辉导师亲自指导下完成的。 导师在学业上给了我很大的帮助,使我在设计过程中避免了许多无为的工作。 导师一丝不苟、严谨认真的治学态度,精益求精、诲人不倦的学者风范,以及正直无私、磊落大度的高尚品格,更让我明白许多做人的道理,在此我对导师表示衷心的感谢!本论文能够完成,要感谢机电学院的所有老师,是他们在这三年的时间里,教会我的专业知识。 在我撰写论文期间,得到了我的指导老师的帮助,在忙碌的工作之余,给予我专业知识上的指导,而且教给我学习的方法和思路,使我在科研工作及论文设计过程中不断有新的认识和提高。 导师为论文课题的研究提出了许多指导性的意见,为论文的撰写、修改提供了许多具体的指导和帮助。 多得他们的指导和帮助才使我能完成本论文。 我会在以后的工作中为社会作出贡献去回报他们对我的教导。 希望每个人都和我一样,通过做毕业设计,能够学到很多的知识与道理,大家都能用一颗热诚的心去投身未来的工作,报效祖国、父母、老师。 在本文结束之际,特向我敬爱的导师和机电学院所有老师致以最崇高的敬礼和深深的感谢!参考文献[1] 张结,黄德斌,唐毅.应用标准与IEC的引用和兼容关系.电力系统自动化,2004,28(19):88~91[2] 朱永利,黄歌,刘培培等.基于IEC的电力远动信息网络化传愉的研究.继电器,2005,33(11):45~48[3] 章宏甲,黄谊,王积伟.液压与气压传动.北京:机械工业出版社, 2002:112~118[4] 成大先.机械设计手册(液压控制).单行本.北京:化学工业出版社, 2004:20~21[5] 廖常初基础及应用.北京:机械工业出版社,2003:57~64[6] 储云峰.西门子电气可编程序控制器原理及应用.北京:机械工业出版社,2006:75~84[7] 汪巍,汪小凤.基于PLC的气动机械手研究.辽宁工程技术大学学报,2005,4(12):97~98[8] 丁筱玲,赵立新. PLC在机械手控制系统上的应用.山东农业大学学报,2006,37(1):105~108[9] 常斗南,王健琪,李全力.可编程控制原理.应用及通信基础.北京:机械工业出版社,1997:50~68[10]王本轶.机电设备控制基础.北京:机械工业出版社,2005:96~112[11]王春行.液压控制系统.北京:机械工业出版社,1999:12~45[12]王永华.现代电气控制及 PLC 应用技术.北京:北京航空航天大学出版社,2003:75~90[13]陈立定.电器控制于可编程控制器.广州:华南理工大学出版社,2001:67~77[14]张林国,王淑英.可编程控制器技术.北京:高等教育出版社,2002:110~123[15]周万珍,高鸿宾分析与设计应用.北京:电子工业出版社,2004:21~45

本文原创来源:电气TV网,欢迎收藏本网址,收藏不迷路哦!

相关阅读

添加新评论