探究PLC编程后的常见问题及可能原因 (plc的实验原理)

探究PLC编程后的常见问题及可能原因(PLC的实验原理) plc的实验原理

一、引言

PLC(可编程逻辑控制器)是一种广泛应用于工业自动化的控制设备,具有高度的可靠性和灵活性。
PLC编程是工业自动化领域中的一项关键技术,它涉及到许多复杂的原理和概念。
在实际应用中,PLC编程后可能会遇到各种问题。
本文将深入探讨PLC编程后的常见问题及其可能原因,并简要介绍PLC的实验原理。

二、PLC编程的常见问题和可能原因

1. 编程错误

编程错误是PLC编程中最常见的问题之一。
可能的原因包括语法错误、逻辑错误和参数设置错误等。
语法错误通常是由于编写程序时的打字错误或缺乏足够的编程知识导致的。
逻辑错误可能是由于对控制逻辑理解不足或考虑不周全造成的。
参数设置错误可能导致PLC无法正常工作或性能下降。

解决方案:加强编程人员的培训,提高编程技能,仔细检查代码,使用仿真软件进行调试,确保程序的正确性和可靠性。

2. 通信问题

PLC与其他设备之间的通信问题是另一个常见的故障点。
可能的原因包括通信协议不匹配、通信线路故障、地址设置错误等。
通信协议不匹配可能导致数据无法正确传输。
通信线路故障可能导致信号中断或传输错误。
地址设置错误可能导致设备无法找到或识别PLC。

解决方案:正确选择通信协议,检查通信线路,确保连接正确无误。
正确设置设备地址,使用诊断工具检查通信状态。

3. 输入/输出问题

PLC的输入/输出问题可能表现为无法正确读取输入信号或无法正确控制输出设备。
可能的原因包括输入/输出模块故障、接线错误、电源问题等。
输入/输出模块故障可能导致信号无法正确传输。
接线错误可能导致信号短路或断路。
电源问题可能导致模块无法正常工作。

解决方案:检查输入/输出模块,确保模块正常工作。
检查接线,确保接线正确无误。
检查电源,确保电源稳定可靠。

4. 定时问题

PLC的定时问题可能表现为定时不准确或定时失效。
可能的原因包括定时器设置错误、定时器故障、外部干扰等。
定时器设置错误可能导致定时时间不准确。
定时器故障可能导致定时失效。
外部干扰可能影响PLC的定时性能。

解决方案:正确设置定时器参数,使用高质量的定时器,加强抗干扰能力,定期检查和维护定时器。

三、PLC的实验原理

PLC的实验原理主要包括输入/输出实验、逻辑控制实验、定时实验等。
在输入/输出实验中,我们需要检查PLC的输入信号和输出信号是否正常。
在逻辑控制实验中,我们需要验证PLC的逻辑控制功能是否正确。
在定时实验中,我们需要测试PLC的定时性能是否准确可靠。
通过这些实验,我们可以了解PLC的性能和特点,找出可能存在的问题,提高PLC的应用效果。

四、结论

PLC编程后的常见问题包括编程错误、通信问题、输入/输出问题和定时问题等。
这些问题的可能原因包括语法错误、逻辑错误、通信协议不匹配、接线错误、电源问题等。
为了解决这个问题,我们需要加强编程人员的培训,提高编程技能,正确选择通信协议,检查接线和电源等。
我们还需要进行PLC的实验,了解PLC的性能和特点,找出可能存在的问题,提高PLC的应用效果。


plc的组成及工作原理

作为一种工业控制的计算机,plc和普通计算机有着相似的结构;但是由于使用场合、目的不同,在结构上又有一些差别。 的硬件组成PLC硬件系统的基本结构如下PLC的主机由CPU、存储器(EPROM、RAM)、输入/输出单元、外设I/O接口、通信接口及电源组成。 对于整体式PLC,这些部件都在同一个机壳内。 而对于模块式PLC,各部件独立封装,称为模块,各模块通过机架和电缆连接在一起。 主机内的各个部分均通过电源总线、控制总线、地址总线和数据总线连接,根据实际控制对象的需要配备一定的外部设备,构成不同的PLC控制系统。 常用的外部设备有编程器、打印机、EPROM写入器等。 PLC可以配置通信模块与上位机及其他的PLC进行通信,构成PLC的分布式控制系统。 下面分别介绍PLC的各组成部分及其作用,以便用户进一步了解PLC的控制原理和工作过程。 (1)CPUCPU是PLC的控制中枢,PLC在CPU的控制下有条不紊地协调工作,从而实现对现场的各个设备进行控制。 CPU由微处理器和控制器组成,它可以实现逻辑运算和数学运算,协调控制系统内部各部分的工作。 控制器的作用是控制整个微处理器的各个部件有条不紊的进行工作,它的基本功能就是从内存中读取指令和执行指令。 (2)存储器PLC配有两种存储器,即系统存储器和用户存储器。 系统存储器用来存放系统管理程序,用户不能访问和修改这部分存储器的内容。 用户存储器用来存放编制的应用程序和工作数据状态。 存放工作数据状态的用户存储器部分也称为数据存储区,它包括输入/输出数据映像区、定时器/计数器预置数和当前值的数据区及存放中间结果的缓冲区。 PLC的存储器主要包括以下几种。 (1)只读存储器(2)可编程只读存储器(3)可擦除可编程只读存储器(4)电可擦除可编程只读存储器(5)随机存取存储器

(3)输入/输出(I/O)模块①开关量输入模块开关量输入设备是各种开关、按钮、传感器等,PLC的输入类型通常可以是直流、交流和交直流。 输入电路的电源可由外部供给,有的也可由PLC内部提供。 ②开关量输出模块输出模块的作用是将CPU执行用户程序所输出的TTL电平的控制信号转化为生产现场所需的,能驱动特定设备的信号,以驱动执行机构的动作。 (4)编程器编程器是PLC重要的外部设备,利用编程器可将用户程序送入PLC的用户程序存储器,调试程序、监控程序的执行过程。 编程器从结构上可分为以下三种类型。 (1)简易编程器(2)图形编程器(3)通用计算机编程器(5)电源

请点击输入图片描述

PLC常见故障有哪些

PLC常见故障:

1、CPU异常:CPU异常报警时,应检查CPU单元连接于内部总线上的所有器件。 具体方法是依次更换可能产生故障的单元,找出故障单元,并作相应处理。

2、存储器异常:存储器异常报警时,如果是程序存储器的问题,通过重新编程后还会再现故障。 这种情况可能是噪声的干扰引起程序的变化,否则应更换存储器。

3、输入/输出单元异常、扩展单元异常:发生这类报警时,应首先检查输入/输出单元和扩展单元连接器的插入状态、电缆连接状态,确定故障发生的某单元之后,再更换单元。

4、不执行程序:输入检查是利用输入LED指示灯识别,或用写入器构成的输入监视器检查。 当输入LED不亮时,可初步确定是外部输入系统故障,再配合万用表检查。

如果输出电压不正常,就可确定是输入单元故障。 当LED亮而内部监视器无显示时,则可认为是输入单元、CPU单元或扩展单元的故障。

程序执行检查是通过写入器上的监视器检查。 当梯形图的接点状态与结果不一致时,则是程序错误(例如内部继电器双重使用等),或是运算部分出现故障。

输出检查可用输出LED指示灯识别。 当运算结果正确而输出LED指示错误时,则可认为是CPU单元、1/0接口单元的故障。 当输出LED是亮的而无输出,则可判断是输出单元故障,或是外部负载系统出现了故障。

5、部分程序不执行:检查方法与前项相同但是,如果计数器、步进控制器等的输入时间过短,则会出现无响应故障,这时应该校验输入时间是否足够大,校验可按输入时间<输入单元的最大响应时间+运算扫描时间乘以2的关系进行。

6、电源的短时掉电,程序内容也会消失:为使微处理器正确启动,PLC中设有初始复位点电路和电源断开时的保存程序电路。 这种电路发生故障时,就不能保存程序。 所以可用电源的通、断进行检查。

7、PROM不能运转:先检查PROM插入是否良好,然后确定是否需要更换芯片

8、电源重新投入或复位后,动作停止:这种故障可认为是噪声干扰或PLC内部接触不良所致。 噪声原因一般都是电路板中小电容容量减小或元件性能不良所致,对接触不良原因可通过轻轻敲PLC机体进行检查。 还要检查电缆和连接器的插入状态。

扩展资料:

PLC的维护:

1、安装有PLC的电气控制柜要有整洁干燥的环境。 内部应安放吸湿干燥物,并防止冷却液,油雾的飞溅。

2、无论系统工作或者停机状态下,电器柜门要始终处于关闭状态,保持电器部件有良好的密封性。

3、保持电器柜风机(如安装)的通风良好,通风口要避开冷却液、油雾飞溅的区域,保持进风口清洁与干燥。

4、按规定要求,定期检查、清洗或更换风机过滤、防尘网。

5、定期清洁电器柜内部与电器元件的灰尘,保持电器元件处于良好的工作环境与工作状态。

6、电缆、电线进出口保持密封状态,防止杂物、灰尘侵入。

7、定期检查、更换电器易损部件,确保全部电器元件都在规定的使用寿命之内。

8、对于通断大功率部件的接触器,应定期检查触点的接触状态,清理触点表面,防止氧化。

9、定期检查安装于设备上的检测元件、开关,随时清洁其上的铁屑、灰尘等污物,保证动作可靠。

10、供电电源的检查。 供电电源的质量直接影响PLC的使用可靠性,也是故障率较高的部件,检查电压是否满足额定范围的85%~110%及考察电压波动是否频繁。

11、运行环境的检查。

12、检查PLC的程序存储器的电池是否需要更换。

简述PLC应用及使用中应注意的问题?

下面是中达咨询给大家带来关于PLC应用及使用中应注意的问题,以供参考。 一、简述多年来,可编程控制器(以下简称PLC)从其产生到现在,实现了接线逻辑到存储逻辑的飞跃;其功能从弱到强,实现了逻辑控制到数字控制的进步;其应用领域从小到大,实现了单体设备简单控制到胜任运动控制、过程控制及集散控制等各种任务的跨越。 今天的PLC在处理模拟量、数字运算、人机接口和网络的各方面能力都已大幅提高,成为工业控制领域的主流控制设备,在各行各业发挥着越来越大的作用。 二、PLC的应用领域目前,PLC在国内外已广泛应用于钢铁、石油、化工、电力、建材、机械制造、汽车、轻纺、交通运输、环保及文化娱乐等各个行业,使用情况主要分为如下几类:1.开关量逻辑控制取代传统的继电器电路,实现逻辑控制、顺序控制,既可用于单台设备的控制,也可用于多机群控及自动化流水线。 如注塑机、印刷机、订书机械、组合机床、磨床、包装生产线、电镀流水线等。 2.工业过程控制在工业生产过程当中,存在一些如温度、压力、流量、液位和速度等连续变化的量(即模拟量),PLC采用相应的A/D和D/A转换模块及各种各样的控制算法程序来处理模拟量,完成闭环控制。 PID调节是一般闭环控制系统中用得较多的一种调节方法。 过程控制在冶金、化工、热处理、锅炉控制等场合有非常广泛的应用。 3.运动控制PLC可以用于圆周运动或直线运动的控制。 一般使用专用的运动控制模块,如可驱动步进电机或伺服电机的单轴或多轴位置控制模块,广泛用于各种机械、机床、机器人、电梯等场合。 4.数据处理PLC具有数学运算(含矩阵运算、函数运算、逻辑运算)、数据传送、数据转换、排序、查表、位操作等功能,可以完成数据的采集、分析及处理。 数据处理一般用于如造纸、冶金、食品工业中的一些大型控制系统。 5.通信及联网PLC通信含PLC间的通信及PLC与其它智能设备间的通信。 随着工厂自动化网络的发展,现在的PLC都具有通信接口,通信非常方便。 三、PLC的应用特点1.可靠性高,抗干扰能力强高可靠性是电气控制设备的关键性能。 PLC由于采用现代大规模集成电路技术,采用严格的生产工艺制造,内部电路采取了先进的抗干扰技术,具有很高的可靠性。 使用PLC构成控制系统,和同等规模的继电接触器系统相比,电气接线及开关接点已减少到数百甚至数千分之一,故障也就大大降低。 此外,PLC带有硬件故障自我检测功能,出现故障时可及时发出警报信息。 在应用软件中,应用者还可以编入外围器件的故障自诊断程序,使系统中除PLC以外的电路及设备也获得故障自诊断保护。 这样,整个系统将极高的可靠性。 2.配套齐全,功能完善,适用性强PLC发展到今天,已经形成了各种规模的系列化产品,可以用于各种规模的工业控制场合。 除了逻辑处理功能以外,PLC大多具有完善的数据运算能力,可用于各种数字控制领域。 多种多样的功能单元大量涌现,使PLC渗透到了位置控制、温度控制、CNC等各种工业控制中。 加上PLC通信能力的增强及人机界面技术的发展,使用PLC组成各种控制系统变得非常容易。 3.易学易用,深受工程技术人员欢迎PLC是面向工矿企业的工控设备。 它接口容易,编程语言易于为工程技术人员接受。 梯形图语言的图形符号与表达方式和继电器电路图相当接近,为不熟悉电子电路、不懂计算机原理和汇编语言的人从事工业控制打开了方便之门。 4.系统的设计,工作量小,维护方便,容易改造PLC用存储逻辑代替接线逻辑,大大减少了控制设备外部的接线,使控制系统设计及建造的周期大为缩短,同时日常维护也变得容易起来,更重要的是使同一设备经过改变程序而改变生产过程成为可能。 这特别适合多品种、小批量的生产场合。 (2)安装与布线● 动力线、控制线以及PLC的电源线和I/O线应分别配线,隔离变压器与PLC和I/O之间应采用双胶线连接。 将PLC的IO线和大功率线分开走线,如必须在同一线槽内,分开捆扎交流线、直流线,若条件允许,分槽走线最好,这不仅能使其有尽可能大的空间距离,并能将干扰降到最低限度。 ● PLC应远离强干扰源如电焊机、大功率硅整流装置和大型动力设备,不能与高压电器安装在同一个开关柜内。 在柜内PLC应远离动力线(二者之间距离应大于200mm)。 与PLC装在同一个柜子内的电感性负载,如功率较大的继电器、接触器的线圈,应并联RC消弧电路。 ● PLC的输入与输出最好分开走线,开关量与模拟量也要分开敷设。 模拟量信号的传送应采用屏蔽线,屏蔽层应一端或两端接地,接地电阻应小于屏蔽层电阻的1/10.● 交流输出线和直流输出线不要用同一根电缆,输出线应尽量远离高压线和动力线,避免并行。 (3)I/O端的接线输入接线● 输入接线一般不要太长。 但如果环境干扰较小,电压降不大时,输入接线可适当长些。 ● 输入/输出线不能用同一根电缆,输入/输出线要分开。 ● 尽可能采用常开触点形式连接到输入端,使编制的梯形图与继电器原理图一致,便于阅读。 输出连接● 输出端接线分为独立输出和公共输出。 在不同组中,可采用不同类型和电压等级的输出电压。 但在同一组中的输出只能用同一类型、同一电压等级的电源。 ● 由于PLC的输出元件被封装在印制电路板上,并且连接至端子板,若将连接输出元件的负载短路,将烧毁印制电路板。 ● 采用继电器输出时,所承受的电感性负载的大小,会影响到继电器的使用寿命,因此,使用电感性负载时应合理选择,或加隔离继电器。 ● PLC的输出负载可能产生干扰,因此要采取措施加以控制,如直流输出的续流管保护,交流输出的阻容吸收电路,晶体管及双向晶闸管输出的旁路电阻保护。 四、PLC应用中需要注意的问题PLC是一种用于工业生产自动化控制的设备,一般不需要采取什么措施,就可以直接在工业环境中使用。 然而,尽管有如上所述的可靠性较高,抗干扰能力较强,但当生产环境过于恶劣,电磁干扰特别强烈,或安装使用不当,就可能造成程序错误或运算错误,从而产生误输入并引起误输出,这将会造成设备的失控和误动作,从而不能保证PLC的正常运行,要提高PLC控制系统可靠性,一方面要求PLC生产厂家提高设备的抗干扰能力;另一方面,要求设计、安装和使用维护中引起高度重视,多方配合才能完善解决问题,有效地增强系统的抗干扰性能。 因此在使用中应注意以下问题:1.工作环境(1)温度PLC要求环境温度在0~55oC,安装时不能放在发热量大的元件下面,四周通风散热的空间应足够大。 (2)湿度为了保证PLC的绝缘性能,空气的相对湿度应小于85%(无凝露)。 (3)震动应使PLC远离强烈的震动源,防止振动频率为10~55Hz的频繁或连续振动。 当使用环境不可避免震动时,必须采取减震措施,如采用减震胶等。 (4)空气避免有腐蚀和易燃的气体,例如氯化氢、硫化氢等。 对于空气中有较多粉尘或腐蚀性气体的环境,可将PLC安装在封闭性较好的控制室或控制柜中。 (5)电源PLC对于电源线带来的干扰具有一定的抵制能力。 在可靠性要求很高或电源干扰特别严重的环境中,可以安装一台带屏蔽层的隔离变压器,以减少设备与地之间的干扰。 一般PLC都有直流24V输出提供给输入端,当输入端使用外接直流电源时,应选用直流稳压电源。 因为普通的整流滤波电源,由于纹波的影响,容易使PLC接收到错误信息。 2.控制系统中干扰及其来源现场电磁干扰是PLC控制系统中最常见也是最易影响系统可靠性的因素之一,所谓治标先治本,找出问题所在,才能提出解决问题的办法。 因此必须知道现场干扰的源头。 (1)干扰源及一般分类影响PLC控制系统的干扰源,大都产生在电流或电压剧烈变化的部位,其原因是电流改变产生磁场,对设备产生电磁辐射;磁场改变产生电流,电磁高速产生电磁波。 通常电磁干扰按干扰模式不同,分为共模干扰和差模干扰。 共模干扰是信号对地的电位差,主要由电网串入、地电位差及空间电磁辐射在信号线上感应的共态(同方向)电压叠加所形成。 共模电压通过不对称电路可转换成差模电压,直接影响测控信号,造成元器件损坏(这就是一些系统I/O模件损坏率较高的主要原因),这种共模干扰可为直流,亦可为交流。 差模干扰是指作用于信号两极间的干扰电压,主要由空间电磁场在信号间耦合感应及由不平衡电路转换共模干扰所形成的电压,这种干扰叠加在信号上,直接影响测量与控制精度。 (2)PLC系统中干扰的主要来源及途径强电干扰PLC系统的正常供电电源均由电网供电。 由于电网覆盖范围广,它将受到所有空间电磁干扰而在线路上感应电压。 尤其是电网内部的变化,刀开关操作浪涌、大型电力设备起停、交直流传动装置引起的谐波、电网短路暂态冲击等,都通过输电线路传到电源原边。 柜内干扰控制柜内的高压电器,大的电感性负载,混乱的布线都容易对PLC造成一定程度的干扰。 来自信号线引入的干扰与PLC控制系统连接的各类信号传输线,除了传输有效的各类信息之外,总会有外部干扰信号侵入。 此干扰主要有两种途径:一是通过变送器供电电源或共用信号仪表的供电电源串入的电网干扰,这往往被忽视;二是信号线受空间电磁辐射感应的干扰,即信号线上的外部感应干扰,这是很严重的。 由信号引入干扰会引起I/O信号工作异常和测量精度大大降低,严重时将引起元器件损伤。 来自接地系统混乱时的干扰接地是提高电子设备电磁兼容性(EMC)的有效手段之一。 正确的接地,既能抑制电磁干扰的影响,又能抑制设备向外发出干扰;而错误的接地,反而会引入严重的干扰信号,使PLC系统将无法正常工作。 来自PLC系统内部的干扰主要由系统内部元器件及电路间的相互电磁辐射产生,如逻辑电路相互辐射及其对模拟电路的影响,模拟地与逻辑地的相互影响及元器件间的相互不匹配使用等。 变频器干扰一是变频器启动及运行过程中产生谐波对电网产生传导干扰,引起电网电压畸变,影响电网的供电质量;二是变频器的输出会产生较强的电磁辐射干扰,影响周边设备的正常工作。 3.主要抗干扰措施(1)电源的合理处理,抑制电网引入的干扰对于电源引入的电网干扰可以安装一台带屏蔽层的变比为1:1的隔离变压器,以减少设备与地之间的干扰,还可以在电源输入端串接LC滤波电路。 (4)正确选择接地点,完善接地系统良好的接地是保证PLC可靠工作的重要条件,可以避免偶然发生的电压冲击危害。 接地的目的通常有两个,其一为了安全,其二是为了抑制干扰。 完善的接地系统是PLC控制系统抗电磁干扰的重要措施之一。 PLC控制系统的地线包括系统地、屏蔽地、交流地和保护地等。 接地系统混乱对PLC系统的干扰主要是各个接地点电位分布不均,不同接地点间存在地电位差,引起地环路电流,影响系统正常工作。 例如电缆屏蔽层必须一点接地,如果电缆屏蔽层两端A、B都接地,就存在地电位差,有电流流过屏蔽层,当发生异常状态如雷击时,地线电流将更大。 此外,屏蔽层、接地线和大地有可能构成闭合环路,在变化磁场的作用下,屏蔽层内又会出现感应电流,通过屏蔽层与芯线之间的耦合,干扰信号回路。 若系统地与其它接地处理混乱,所产生的地环流就可能在地线上产生不等电位分布,影响PLC内逻辑电路和模拟电路的正常工作。 PLC工作的逻辑电压干扰容限较低,逻辑地电位的分布干扰容易影响PLC的逻辑运算和数据存贮,造成数据混乱、程序跑飞或死机。 模拟地电位的分布将导致测量精度下降,引起对信号测控的严重失真和误动作。 ● 安全地或电源接地将电源线接地端和柜体连线接地为安全接地。 如电源漏电或柜体带电,可从安全接地导入地下,不会对人造成伤害。 ● 系统接地PLC控制器为了与所控的各个设备同电位而接地,叫系统接地。 接地电阻值不得大于4Ω,一般需将PLC设备系统地和控制柜内开关电源负端接在一起,作为控制系统地。 ● 信号与屏蔽接地一般要求信号线必须要有唯一的参考地,屏蔽电缆遇到有可能产生传导干扰的场合,也要在就地或者控制室唯一接地,防止形成“地环路”。 信号源接地时,屏蔽层应在信号侧接地;不接地时,应在PLC侧接地;信号线中间有接头时,屏蔽层应牢固连接并进行绝缘处理,一定要避免多点接地;多个测点信号的屏蔽双绞线与多芯对绞总屏蔽电缆连接时,各屏蔽层应相互连接好,并经绝缘处理,选择适当的接地处单点接点。 5)对变频器干扰的抑制变频器的干扰处理一般有下面几种方式:加隔离变压器,主要是针对来自电源的传导干扰,可以将绝大部分的传导干扰阻隔在隔离变压器之前。 使用滤波器,滤波器具有较强的抗干扰能力,还具有防止将设备本身的干扰传导给电源,有些还兼有尖峰电压吸收功能。 使用输出电抗器,在变频器到电动机之间增加交流电抗器主要是减少变频器输出在能量传输过程中线路产生电磁辐射,影响其它设备正常工作。 五、结束语PLC控制系统中的干扰是一个十分复杂的问题,因此在抗干扰设计中应综合考虑各方面的因素,合理有效地抑制抗干扰,才能够使PLC控制系统正常工作。 随着PLC应用领域的不断拓宽,如何高效可靠的使用PLC也成为其发展的重要因素。 21世纪,PLC会有更大的发展,产品的品种会更丰富、规格更齐全,通过完美的人机界面、完备的通信设备会更好地适应各种工业控制场合的需求,PLC作为自动化控制网络和国际通用网络的重要组成部分,将在工业控制领域发挥越来越大的作用。 更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:

本文原创来源:电气TV网,欢迎收藏本网址,收藏不迷路哦!

相关阅读

添加新评论