程序的架构与功能概览 (程序的架构与什么有关)

程序的架构与功能概览:探索程序架构的奥秘及其重要性 程序的架构与什么有关

一、引言

随着信息技术的飞速发展,软件程序已成为我们日常生活和工作中不可或缺的一部分。
一个优秀的程序不仅需要具备出色的功能,更需要有一个合理、稳定的架构来支撑这些功能的实现。
那么,什么是程序的架构?它与哪些因素有关?本文将详细探讨程序的架构及其与功能的关系。

二、程序架构概述

程序架构是指软件程序的结构、设计和组织方式,它是程序实现功能的基础。
一个好的程序架构应该具备模块化、可扩展性、可维护性和性能高等特点。
程序架构的优劣直接影响到软件的开发效率、运行稳定性和功能扩展性。

三、程序架构与功能的关系

1. 模块化与功能实现

程序的架构首先体现在模块化设计上。
模块化是将一个复杂的程序划分为多个独立的、功能单一的模块。
每个模块实现特定的功能,模块之间通过明确的接口进行通信。
这种设计方式使得功能的实现更加清晰、易于理解和维护。
同时,模块化设计也有利于程序的并行开发和团队协作。

2. 可扩展性与功能扩展

程序架构的可扩展性对于软件的长期发展至关重要。
随着用户需求的变化和业务的扩展,软件需要不断添加新功能。
一个具有良好扩展性的架构可以方便地集成新的功能模块,而不会对现有系统的稳定性和性能造成太大影响。
可扩展的架构通常具备灵活的设计、清晰的层次结构和良好的模块化特性。

3. 性能与功能效率

程序的性能是用户最直观的感受,也是衡量程序架构优劣的重要指标之一。
一个高效的程序架构能够确保软件在面临各种复杂任务时,以更快的速度和更好的稳定性来响应。
合理的架构还可以优化资源利用,降低软件的能耗和内存占用,从而提高软件的整体性能。
在设计和实现程序功能时,需要考虑如何优化架构以提高性能。

四、程序架构的关键因素

1. 技术选型

技术选型是构建程序架构的首要任务。
选择合适的技术栈对于程序的开发效率、稳定性和可扩展性具有重要影响。
技术选型应考虑到项目的需求、开发团队的技能储备、技术发展趋势等多方面因素。

2. 设计模式

设计模式是程序设计的重要方法,如面向对象、事件驱动等。
合理采用设计模式可以使程序架构更加清晰、易于理解和维护。
同时,设计模式还可以提高程序的性能和可扩展性。

3. 框架和库的选择与使用

框架和库是软件开发中常用的工具。
选择合适的框架和库可以大大提高开发效率和代码质量。
框架和库的选择也需要考虑项目的需求、开发团队的技能水平和项目的规模等因素。
在使用框架和库时,需要了解其特性和最佳实践,以充分发挥其优势。

五、结论

程序的架构是软件实现功能的基础,它直接影响到软件的开发效率、运行稳定性和功能扩展性。
一个好的程序架构应具备模块化、可扩展性、可维护性和性能高等特点。
在设计和实现程序功能时,需要考虑如何优化架构以提高性能。
同时,技术选型、设计模式和框架与库的选择与使用等关键因素也需要引起足够的重视。
通过不断优化和完善程序架构,我们可以为软件的发展奠定坚实的基础。


AMD GCN架构概览

引言

欢迎来到《AMD GPGPU架构探索》系列的第一篇章,我们将深入解读AMD GCN架构的基石——2012年的GCN1,本文灵感源于Layla Mah的经典教程《GS-4106: AMD GCN架构速成课程》。

Compute Unit (CU)——核心单元

AMD的GPGPU构建于基石般的Compute Unit (CU),它是GPU运算的核心模块。每个CU包含以下关键组件:

指令发射与ALU特性

每个周期内,单个CU可同时处理5条指令,且每种指令类型仅允许一条,wavefront之间也有单独的发射限制。 每个CU的指令执行能力依赖于硬件资源的合理分配。

Local Data Share (LDS) - 这部分内容将在后续深入探讨,有兴趣的读者可参考原文链接获取更多。

Cache架构

GCN时代的Cache层次结构曾有64KiB的GDS,但实际使用率不高。 CDNA时期,GDS容量减小至4KiB,最终甚至被移除,转而支持全局写共享(GWS)等同步功能。

ISA与参考文献

想要了解更多关于AMD GCN架构的,敬请参考以下链接:Layla Mah的《GS-4106: AMD GCN架构速成课程》以及AMD官方文档《Southern Islands Instruction Set Architecture》。

什么是软件架构?有没有具体解释?

软件架构软件架构(software architecture)是一系列相关的抽象模式,用于指导大型软件系统各个方面的设计。 软件架构是一个系统的草图。 软件架构描述的对象是直接构成系统的抽象组件。 各个组件之间的连接则明确和相对细致地描述组件之间的通讯。 在实现阶段,这些抽象组件被细化为实际的组件,比如具体某个类或者对象。 在面向对象领域中,组件之间的连接通常用接口_(计算机科学)来实现。 软件体系结构是构建计算机软件实践的基础。 与建筑师设定建筑项目的设计原则和目标,作为绘图员画图的基础一样,一个软件架构师或者系统架构师陈述软件构架以作为满足不同客户需求的实际系统设计方案的基础。 软件构架是一个容易理解的概念,多数工程师(尤其是经验不多的工程师)会从直觉上来认识它,但要给出精确的定义很困难。 特别是,很难明确地区分设计和构架:构架属于设计的一方面,它集中于某些具体的特征。 在“软件构架简介”中,David GArlan 和 Mary Shaw 认为软件构架是有关如下问题的设计层次:“在计算的算法和数据结构之外,设计并确定系统整体结构成为了新的问题。 结构问题包括总体组织结构和全局控制结构;通信、同步和数据访问的协议;设计元素的功能分配;物理分布;设计元素的组成;定标与性能;备选设计的选择。 ”[GS93]但构架不仅是结构;IEEE Working Group on Architecture 把其定义为“系统在其环境中的最高层概念”[IEEE98]。 构架还包括“符合”系统完整性、经济约束条件、审美需求和样式。 它并不仅注重对内部的考虑,而且还在系统的用户环境和开发环境中对系统进行整体考虑,即同时注重对外部的考虑。 在 Rational Unified ProcESs 中,软件系统的构架(在某一给定点)是指系统重要构件的组织或结构,这些重要构件通过接口与不断减小的构件与接口所组成的构件进行交互。 从和目的、主题、材料和结构的联系上来说,软件架构可以和建筑物的架构相比拟。 一个软件架构师需要有广泛的软件理论知识和相应的经验来事实和管理软件产品的高级设计。 软件架构师定义和设计软件的模块化,模块之间的交互,用户界面风格,对外接口方法,创新的设计特性,以及高层事物的对象操作、逻辑和流程。 是一般而言,软件系统的架构(ArchitECture)有两个要素:·它是一个软件系统从整体到部分的最高层次的划分。 一个系统通常是由元件组成的,而这些元件如何形成、相互之间如何发生作用,则是关于这个系统本身结构的重要信息。 详细地说,就是要包括架构元件(Architecture Component)、联结器(Connector)、任务流(TASk-flow)。 所谓架构元素,也就是组成系统的核心砖瓦,而联结器则描述这些元件之间通讯的路径、通讯的机制、通讯的预期结果,任务流则描述系统如何使用这些元件和联结器完成某一项需求。 ·建造一个系统所作出的最高层次的、以后难以更改的,商业的和技术的决定。 在建造一个系统之前会有很多的重要决定需要事先作出,而一旦系统开始进行详细设计甚至建造,这些决定就很难更改甚至无法更改。 显然,这样的决定必定是有关系统设计成败的最重要决定,必须经过非常慎重的研究和考察。 历史早在1960年代,诸如E·W·戴克斯特拉就已经涉及软件架构这个概念了。 自1990年代以来,部分由于在 Rational Software Corporation 和MiCROSoft内部的相关活动,软件架构这个概念开始越来越流行起来。 卡内基梅隆大学和加州大学埃尔文分校在这个领域作了很多研究。 卡内基·梅隆大学的Mary Shaw和David Garlan于1996年写了一本叫做 Software Architecture perspective on an emerging DIscipline的书,提出了软件架构中的很多概念,例如软件组件、连接器、风格等等。 加州大学埃尔文分校的软件研究院所做的工作则主要集中于架构风格、架构描述语言以及动态架构。 计算机软件的历史开始于五十年代,历史非常短暂,而相比之下建筑工程则从石器时代就开始了,人类在几千年的建筑设计实践中积累了大量的经验和教训。 建筑设计基本上包含两点,一是建筑风格,二是建筑模式。 独特的建筑风格和恰当选择的建筑模式,可以使一个独一无二。 下面的照片显示了中美洲古代玛雅建筑,Chichen-Itza大金字塔,九个巨大的石级堆垒而上,九十一级台阶(象征着四季的天数)夺路而出,塔顶的神殿耸入云天。 所有的数字都如日历般严谨,风格雄浑。 难以想象这是石器时代的建筑物。 图1、位于墨西哥Chichen-Itza(在玛雅语中chi意为嘴chen意为井)的古玛雅建筑。 (摄影:作者) 软件与人类的关系是架构师必须面对的核心问题,也是自从软件进入历史舞台之后就出现的问题。 与此类似地,自从有了建筑以来,建筑与人类的关系就一直是建筑设计师必须面对的核心问题。 英国首相丘吉尔说,我们构造建筑物,然后建筑物构造我们(We shape our buildings, and afterwaRDS our buildings shape us)。 英国下议院的会议厅较狭窄,无法使所有的下议院议员面向同一个方向入座,而必须分成两侧入座。 丘吉尔认为,议员们入座的时候自然会选择与自己政见相同的人同时入座,而这就是英国政党制的起源。 Party这个词的原意就是方、面。 政党起源的关键就是建筑物对人的影响。 在软件设计界曾经有很多人认为功能是最为重要的,形式必须服从功能。 与此类似地,在建筑学界,现代主义建筑流派的开创人之一Louis Sullivan也认为形式应当服从于功能(FORMs follows function)。 几乎所有的软件设计理念都可以在浩如烟海的建筑学历史中找到更为遥远的历史回响。 最为著名的,当然就是模式理论和XP理论。 架构的目标是什么正如同软件本身有其要达到的目标一样,架构设计要达到的目标是什么呢?一般而言,软件架构设计要达到如下的目标:·可靠性(Reliable)。 软件系统对于用户的商业经营和管理来说极为重要,因此软件系统必须非常可靠。 ·安全行(Secure)。 软件系统所承担的交易的商业价值极高,系统的安全性非常重要。 ·可扩展性(SCAlable)。 软件必须能够在用户的使用率、用户的数目增加很快的情况下,保持合理的性能。 只有这样,才能适应用户的市场扩展得可能性。 ·可定制化(CuSTomizable)。 同样的一套软件,可以根据客户群的不同和市场需求的变化进行调整。 ·可扩展性(Extensible)。 在新技术出现的时候,一个软件系统应当允许导入新技术,从而对现有系统进行功能和性能的扩展·可维护性(MAIntainable)。 软件系统的维护包括两方面,一是排除现有的错误,二是将新的软件需求反映到现有系统中去。 一个易于维护的系统可以有效地降低技术支持的花费·客户体验(Customer Experience)。 软件系统必须易于使用。 ·市场时机(Time to Market)。 软件用户要面临同业竞争,软件提供商也要面临同业竞争。 以最快的速度争夺市场先机非常重要。 架构的种类根据我们关注的角度不同,可以将架构分成三种:·逻辑架构、软件系统中元件之间的关系,比如用户界面,数据库,外部系统接口,商业逻辑元件,等等。 比如下面就是笔者亲身经历过的一个软件系统的逻辑架构图图2、一个逻辑架构的例子从上面这张图中可以看出,此系统被划分成三个逻辑层次,即表象层次,商业层次和数据持久层次。 每一个层次都含有多个逻辑元件。 比如WEB服务器层次中有HTML服务元件、Session服务元件、安全服务元件、系统管理元件等。 ·物理架构、软件元件是怎样放到硬件上的。 比如下面这张物理架构图描述了一个分布于北京和上海的分布式系统的物理架构,图中所有的元件都是物理设备,包括网络分流器、代理服务器、WEB服务器、应用服务器、报表服务器、整合服务器、存储服务器、主机等等。 图3、一个物理架构的例子 ·系统架构、系统的非功能性特征,如可扩展性、可靠性、强壮性、灵活性、性能等。 系统架构的设计要求架构师具备软件和硬件的功能和性能的过硬知识,这一工作无疑是架构设计工作中最为困难的工作。 此外,从每一个角度上看,都可以看到架构的两要素:元件划分和设计决定。 首先,一个软件系统中的元件首先是逻辑元件。 这些逻辑元件如何放到硬件上,以及这些元件如何为整个系统的可扩展性、可靠性、强壮性、灵活性、性能等做出贡献,是非常重要的信息。 其次,进行软件设计需要做出的决定中,必然会包括逻辑结构、物理结构,以及它们如何影响到系统的所有非功能性特征。 这些决定中会有很多是一旦作出,就很难更改的。 根据作者的经验,一个基于数据库的系统架构,有多少个数据表,就会有多少页的架构设计文档。 比如一个中等的数据库应用系统通常含有一百个左右的数据表,这样的一个系统设计通常需要有一百页左右的架构设计文档。 构架描述 为了讨论和分析软件构架,必须首先定义构架表示方式,即描述构架重要方面的方式。 在 Rational Unified Process 中,软件构架文档记录有这种描述。 构架视图 我们决定以多种构架视图来表示软件构架。 每种构架视图针对于开发流程中的涉众(例如最终用户、设计人员、管理人员、系统工程师、维护人员等)所关注的特定方面。 构架视图显示了软件构架如何分解为构件,以及构件如何由连接器连接来产生有用的形式 [PW92],由此记录主要的结构设计决策。 这些设计决策必须基于需求以及功能、补充和其他方面的约束。 而这些决策又会在较低层次上为需求和将来的设计决策施加进一步的约束。 典型的构架视图集 构架由许多不同的构架视图来表示,这些视图本质上是以图形方式来摘要说明“在构架方面具有重要意义”的模型元素。 在 Rational Unified Process 中,您将从一个典型的视图集开始,该视图集称为“4+1 视图模型”[KRU95]。 它包括: 用例视图:包括用例和场景,这些用例和场景包括在构架方面具有重要意义的行为、类或技术风险。 它是用例模型的子集。 逻辑视图:包括最重要的设计类、从这些设计类到包和子系统的组织形式,以及从这些包和子系统到层的组织形式。 它还包括一些用例实现。 它是设计模型的子集。 实施视图:包括实施模型及其从模块到包和层的组织形式的概览。 同时还描述了将逻辑视图中的包和类向实施视图中的包和模块分配的情况。 它是实施模型的子集。 进程视图:包括所涉及任务(进程和线程)的描述,它们的交互和配置,以及将设计对象和类向任务的分配情况。 只有在系统具有很高程度的并行时,才需要该视图。 在 Rational Unified Process 中,它是设计模型的子集。 配置视图:包括对最典型的平台配置的各种物理节点的描述以及将任务(来自进程视图)向物理节点分配的情况。 只有在分布式系统中才需要该视图。 它是部署模型的一个子集。 构架视图记录在软件构架文档中。 您可以构建其他视图来表达需要特别关注的不同方面:用户界面视图、安全视图、数据视图等等。 对于简单系统,可以省略 4+1 视图模型中的一些视图。 构架重点 虽然以上视图可以表示系统的整体设计,但构架只同以下几个具体方面相关: 模型的结构,即组织模式,例如分层。 基本元素,即关键用例、主类、常用机制等,它们与模型中的各元素相对。 几个关键场景,它们表示了整个系统的主要控制流程。 记录模块度、可选特征、产品线状况的服务。 构架视图在本质上是整体设计的抽象或简化,它们通过舍弃具体来突出重要的特征。 在考虑以下方面时,这些特征非常重要:系统演进,即进入下一个开发周期。 在产品线环境下复用构架或构架的一部分。 评估补充质量,例如性能、可用性、可移植性和安全性。 向团队或分包商分配开发工作。 决定是否包括市售构件。 插入范围更广的系统。 构架模式 构架模式是解决复发构架问题的现成形式。 构架框架或构架基础设施(中间件)是可以在其上构建某种构架的构件集。 许多主要的构架困难应在框架或基础设施中进行解决,而且通常针对于特定的领域:命令和控制、MIS、控制系统等等。 构架模式示例[BUS96] 根据构架模式最适用的系统的特征将其分类,其中一个类别处理更普遍的结构问题。 下表显示了 [BUS96] 中所提供的类别和这些类别所包含的模式。 类别 模式 结构 层 管道和过滤器 黑板 分布式系统 代理 交互系统 模型-视图-控制器 表示-抽象-控制 自适应系统 反射 微核 软件构架是一个容易理解的概念,多数工程师(尤其是经验不多的工程师)会从直觉上来认识它,但要给出精确的定义很困难。 特别是,很难明确地区分设计和构架:构架属于设计的一方面,它集中于某些具体的特征。 在“软件构架简介”中,David Garlan 和 Mary Shaw 认为软件构架是有关如下问题的设计层次:“在计算的算法和数据结构之外,设计并确定系统整体结构成为了新的问题。 结构问题包括总体组织结构和全局控制结构;通信、同步和数据访问的协议;设计元素的功能分配;物理分布;设计元素的组成;定标与性能;备选设计的选择。 ”[GS93] 但构架不仅是结构;IEEE Working Group on Architecture 把其定义为“系统在其环境中的最高层概念”[IEEE98]。 构架还包括“符合”系统完整性、经济约束条件、审美需求和样式。 它并不仅注重对内部的考虑,而且还在系统的用户环境和开发环境中对系统进行整体考虑,即同时注重对外部的考虑。 在 Rational Unified Process 中,软件系统的构架(在某一给定点)是指系统重要构件的组织或结构,这些重要构件通过接口与不断减小的构件与接口所组成的构件进行交互。 为阐明其含义,下面将详述其中的两个;完整说明请参见 [BUS96]。 模式以下列广泛使用的形式来表示:模式名 环境 问题影响,描述应考虑的不同问题方面 解决方案基本原理 结果环境 示例 模式名层环境需要进行结构分解的大系统。 问题必须处理不同抽象层次的问题的系统。 例如:硬件控制问题、常见服务问题和针对于不同领域的问题。 最好不要编写垂直构件来处理所有抽象层次的问题。 否则要在不同的构件中多次处理相同的问题(可能会不一致)。 影响系统的某些部分应当是可替换的 构件中的变化不应波动 相似的责任应归为一组 构件大小 -- 复杂构件可能要进行分解 解决办法将系统分成构件组,并使构件组形成层叠结构。 使上层只使用下层(决不使用上层)提供的服务。 尽量不使用非紧邻下层提供的服务(不跳层使用服务,除非中间层只添加通过构件)。 示例:1. 通用层严格的分层构架规定设计元素(类、构件、包、子系统)只能使用下层提供的服务, 服务可以包括事件处理、错误处理、数据库访问等等。 相对于记录在底层的原始操作系统级调用,它包括更明显的机制。 2. 业务系统层上图显示了另一个分层示例,其中有垂直特定应用层、水平层和基础设施层。 注意:此处的目标是采用非常短的业务“烟囱”并实现各种应用程序间的通用性。 否则,就可能有多个人解决同一问题,从而导致潜在的分歧。 有关该模式的深入讨论,请参见指南:分层。 模式名黑板环境没有解决问题的确定方法(算法)或方法不可行的领域。 例如 AI 系统、语音识别和监视系统。 问题多个问题解决顾问(知识顾问)必须通过协作来解决他们无法单独解决的问题。 各顾问的工作结果必须可以供所有其他顾问访问,使他们可以评估自己是否可以参与解决方案的查找并发布其工作结果。 影响知识顾问参与解决问题的顺序不是确定的,这可能取决于问题解决策略 不同顾问的输入(结果或部分解决方案)可能有不同的表示方式 各顾问并不直接知道对方的存在,但可以评估对方发布的工作 解决办法多名知识顾问都可访问一个称为“黑板”的共享数据库。 黑板提供监测和更新其内容的接口。 控制模块/对象激活遵循某种策略的顾问。 激活后,顾问查看黑板,以确定它是否能参与解决问题。 如果顾问决定它可以参与,控制对象就可以允许顾问将其部分(或最终)解决方案放置于黑板上。 示例:以上显示了使用 UML 建模的结构或静态视图。 它将成为参数化协作的一部分,然后会绑定到实参上对模式进行实例化。 构架风格 软件构架(或仅是构架视图)可以具有名为构架风格的属性,该属性减少了可选的形式,并使构架具有一定程度的一致性。 样式可以通过一组模式或通过选择特定构件或连接器作为基本构件来定义。 对给定系统,某些样式可作为构架描述的一部分记录在构架风格指南(Rational Unified Process 中设计指南文档的一部分)中。 样式在构架的可理解性与完整性方面起着主要的作用。 构架设计图 构架视图的图形描述称为构架设计图。 对于以上描述的各种视图,设计图由以下统一建模语言图组成 [UML99]: 逻辑视图:类图、状态机和对象图。 进程视图:类图与对象图(包括任务 - 进程与线程)。 实施视图:构件图。 部署视图:配置图。 用例视图:用例图描述用例、主角和普通设计类;顺序图描述设计对象及其协作关系。 构架设计流程 在 Rational Unified Process 中,构架主要是分析设计工作流程的结果。 当项目再次进行此工作流程时,构架将在一次又一次迭代中不断演化、改进、精炼。 由于每次迭代都包括集成和测试,所以在交付产品时,构架就相当强壮了。 构架是精化阶段各次迭代的重点,构架的基线通常会在此阶段结束时确定。 架构师软体设计师中有一些技术水平较高、经验较为丰富的人,他们需要承担软件系统的架构设计,也就是需要设计系统的元件如何划分、元件之间如何发生相互作用,以及系统中逻辑的、物理的、系统的重要决定的作出。 这样的人就是所谓的架构师(Architect)。 在很多公司中,架构师不是一个专门的和正式的职务。 通常在一个开发小组中,最有经验的程序员会负责一些架构方面的工作。 在一个部门中,最有经验的项目经理会负责一些架构方面的工作。 但是,越来越多的公司体认到架构工作的重要性,并且在不同的组织层次上设置专门的架构师位置,由他们负责不同层次上的逻辑架构、物理架构、系统架构的设计、配置、维护等工作。

微软应用架构指南图书信息

微软的《应用架构指南》是一本针对架构师和开发人员的实用参考书籍,定价为69.00元,目前库存充足,全国配送服务可享。 该书由中国电子工业出版社于2010年11月1日出版,采用16开本,ISBN号码为73。

本书内容丰富,旨在帮助读者在微软平台和框架下进行高效的应用程序架构设计。全书分为四个部分:第一部分深入探讨软件架构和设计篇,包括对底层原则和模式的总结,为理解架构基础提供重要参考;

第二部分设计基础篇,详细阐述了设计解决方案分层、组件和服务的策略,以及如何处理质量和横切关注点,为构建稳健架构提供了实用原则;

第三部分应用原型篇,针对不同类型的典型应用程序,提供针对性的设计指导,帮助开发者针对实际场景进行优化设计;

最后,附录部分则对微软平台和框架的技术特性进行了概览,为读者掌握相关技术提供了实用的导航工具。

具体目录如下:

通过本书,读者可以系统地学习和应用微软平台的架构设计技巧,提升开发效率和应用质量。

本文原创来源:电气TV网,欢迎收藏本网址,收藏不迷路哦!

相关阅读

添加新评论