助你快速实现机器定位复位功能 (助你快速实现梦想英语)

助你快速实现机器定位复位功能

一、引言

随着工业自动化技术的不断发展,机器定位复位功能在生产线上的重要性日益凸显。
如何实现快速、精确的机器定位复位功能,成为了众多工程师和技术人员关注的焦点。
本文将为你详细介绍机器定位复位功能的实现过程,助你快速实现梦想,提升生产效率。

二、机器定位复位功能概述

机器定位复位功能是指机器在工作过程中,由于某些原因需要回到预设的初始位置或特定位置时,通过一定手段使机器迅速准确地回到预定位置的过程。
实现机器定位复位功能有助于提高生产线的自动化程度、提高生产效率、降低产品不良率等。

三、实现机器定位复位功能的步骤

1. 确定需求:在实现机器定位复位功能前,需要明确需求,如复位的位置、精度要求、执行时间等。根据具体需求,制定详细的实施方案。
2. 选择定位技术:根据机器的特点和应用场景,选择合适的定位技术。常见的定位技术包括光电定位、磁性定位、机械定位等。光电定位具有精度高、响应快的优点,适用于高速生产线;磁性定位成本较低,适用于一些精度要求不高的场景;机械定位则通过机械结构实现定位,适用于一些特殊需求的场景。
3. 设计控制系统:根据所选的定位技术和机器特点,设计合理的控制系统。控制系统应能实现自动控制、手动控制以及应急控制等功能,确保机器在复位过程中的稳定性和安全性。
4. 编写控制程序:根据设计方案,编写控制程序。控制程序应能实现精准控制,确保机器在复位过程中的精确性和稳定性。同时,控制程序应具有容错能力,能在出现异常情况时及时进行处理,保证生产线的稳定运行。
5. 调试与优化:完成编程后,进行调试与优化。通过实际运行,检查机器的定位复位功能是否满足需求,对存在的问题进行调整和优化。调试过程中应注意安全,避免意外情况的发生。

四、常见问题和解决方案

1. 定位精度不足:在机器定位复位过程中,可能会出现定位精度不足的问题。这可能是由于硬件故障、控制系统设计不合理或控制程序编写错误等原因导致的。针对这一问题,可以通过检查硬件设备、优化控制系统设计、调整控制程序等方式进行解决。
2. 响应速度慢:机器定位复位的响应速度是影响生产效率的重要因素。如果响应速度慢,可能会影响生产线的整体运行效率。为了提高响应速度,可以选择高性能的硬件设备和优化控制程序,以提高机器的定位复位速度。
3. 稳定性问题:在机器定位复位过程中,稳定性是一个关键问题。如果机器在复位过程中出现抖动或偏移,可能会影响产品的质量和生产效率。为了提高稳定性,可以通过优化控制系统设计、加强机械结构的稳定性、提高硬件设备的性能等方式进行改善。

五、案例分析

以某生产线上的机器人定位复位为例,通过选择合适的定位技术、设计合理的控制系统、编写精准的控制程序,成功实现了机器人的快速定位复位功能。
在实际运行中,机器人能够准确、快速地回到预定位置,大大提高了生产线的自动化程度和生产效率。

六、总结

本文详细介绍了机器定位复位功能的实现过程,包括确定需求、选择定位技术、设计控制系统、编写控制程序以及调试与优化等步骤。
同时,针对常见的问题和解决方案进行了阐述。
通过案例分析,展示了机器定位复位功能的实际应用效果。
希望本文能助你快速实现机器定位复位功能,提升生产效率。


处于困境的年轻人如何快速实现自己的梦想?

当自己处于困境的时候,想要快速实现自己的梦想的确是一件大难题,以下几种解决方法相信会对你有所帮助:

1、重新规划好自己的生活,让自己的生活变得更加充实,给自己制定一个奋斗目标,相信很快就能够摆脱自己的困境。

2、把自己的压力慢慢转换成奋斗的动力,相信在不久之后也能够成功实现自己的梦想。

关于仿生学的资料

仿生学(bionics)在具有生命之意的希腊语bion 上,加上有工程技术涵义的ics而组成的词。 大约从1960年才开始使用。 生物具有的功能迄今比任何人工制造的机械都优越得多,仿生学就是要在工程上实现并有效地应用生物功能的一门学科。 例如关于信息接受(感觉功能)、信息传递(神经功能)、自动控制系统等,这种生物体的结构与功能在机械设计方面给了很大启发。 可举出的仿生学例子,如将海豚的体形或皮肤结构(游泳时能使身体表面不产生紊流)应用到潜艇设计原理上。 仿生学也被认为是与控制论有密切关系的一门学科,而控制论主要是将生命现象和机械原理加以比较,进行研究和解释的一门学科。 苍蝇,是细菌的传播者,谁都讨厌它。 可是苍蝇的楫翅(又叫平衡棒)是“天然导航仪”,人们模仿它制成了“振动陀螺仪”。 这种仪器目前已经应用在火箭和高速飞机上,实现了自动驾驶。 苍蝇的眼睛是一种“复眼”,由30O0多只小眼组成,人们模仿它制成了“蝇眼透镜”。 “蝇眼透镜”是用几百或者几千块小透镜整齐排列组合而成的,用它作镜头可以制成“蝇眼照相机”,一次就能照出千百张相同的相片。 这种照相机已经用于印刷制版和大量复制电子计算机的微小电路,大大提高了工效和质量。 “蝇眼透镜”是一种新型光学元件,它的用途很多。 自然界形形色色的生物,都有着怎样的奇异本领?它们的种种本领,给了人类哪些启发?模仿这些本领,人类又可以造出什么样的机器?这里要介绍的一门新兴科学——仿生学。 仿生学是指模仿生物建造技术装置的科学,它是在本世纪中期才出现的一门新的边缘科学。 仿生学研究生物体的结构、功能和工作原理,并将这些原理移植于工程技术之中,发明性能优越的仪器、装置和机器,创造新技术。 从仿生学的诞生、发展,到现在短短几十年的时间内,它的研究成果已经非常可观。 仿生学的问世开辟了独特的技术发展道路,也就是向生物界索取蓝图的道路,它大大开阔了人们的眼界,显示了极强的生命力。 【人类仿生由来已久】 自古以来,自然界就是人类各种技术思想、工程原理及重大发明的源泉。 种类繁多的生物界经过长期的进化过程,使它们能适应环境的变化,从而得到生存和发展。 劳动创造了人类。 人类以自己直立的身躯、能劳动的双手、交流情感和思想的语言,在长期的生产实践中,促进了神经系统尤其是大脑获得了高度发展。 因此,人类无与伦比的能力和智慧远远超过生物界的所有类群。 人类通过劳动运用聪明的才智和灵巧的双手制造工具,从而在自然界里获得更大自由。 人类的智慧不仅仅停留在观察和认识生物界上,而且还运用人类所独有的思维和设计能力模仿生物,通过创造性的劳动增加自己的本领。 鱼儿在水中有自由来去的本领,人们就模仿鱼类的形体造船,以木桨仿鳍。 相传早在大禹时期,我国古代劳动人民观察鱼在水中用尾巴的摇摆而游动、转弯,他们就在船尾上架置木桨。 通过反复的观察、模仿和实践,逐渐改成橹和舵,增加了船的动力,掌握了使船转弯的手段。 这样,即使在波涛滚滚的江河中,人们也能让船只航行自如。 鸟儿展翅可在空中自由飞翔。 据《韩非子》记载鲁班用竹木作鸟“成而飞之,三日不下”。 然而人们更希望仿制鸟儿的双翅使自己也飞翔在空中。 早在四百多年前,意大利人利奥那多·达·芬奇和他的助手对鸟类进行仔细的解剖,研究鸟的身体结构并认真观察鸟类的飞行。 设计和制造了一架扑翼机,这是世界上第一架人造飞行器。 以上这些模仿生物构造和功能的发明与尝试,可以认为是人类仿生的先驱,也是仿生学的萌芽。 【发人深省的对比】 人类仿生的行为虽然早有雏型,但是在20世纪40年代以前,人们并没有自觉地把生物作为设计思想和创造发明的源泉。 科学家对于生物学的研究也只停留在描述生物体精巧的结构和完美的功能上。 而工程技术人员更多的依赖于他们卓越的智慧,辛辛苦苦的努力,进行着人工发明。 他们很少有意识的向生物界学习。 但是,以下几个事实可以说明:人们在技术上遇到的某些难题,生物界早在千百万年前就曾出现,而且在进化过程中就已解决了,然而人类却没有从生物界得到应有的启示。 在第一次世界大战时期,出于军事上的需要,为使舰艇在水下隐蔽航行而制造出潜水艇。 当工程技术人员在设计原始的潜艇时,是先用石块或铅块装在潜艇上使它下沉,如果需要升至水面,就将携带的石块或铅块扔掉,使艇身回到水面来。 以后经过改进,在潜艇上采用浮箱交替充水和排水的方法来改变潜艇的重量。 以后又改成压载水舱,在水舱的上部设放气阀,下面设注水阀,当水舱灌满海水时,艇身重量增加使可它潜入水中。 需要紧急下潜时,还有速潜水舱,待艇身潜入水中后,再把速潜水舱内的海水排出。 如果一部分压载水舱充水,另一部分空着,潜水艇可处于半潜状态。 潜艇要起浮时,将压缩空气通入水舱排出海水,艇内海水重量减轻后潜艇就可以上浮。 如此优越的机械装置实现了潜艇的自由沉浮。 但是后来发现鱼类的沉浮系统比人们的发明要简单得多,鱼的沉浮系统仅仅是充气的鱼鳔。 鳔内不受肌肉的控制,而是依靠分泌氧气进入鳔内或是重新吸收鳔内一部分氧气来调节鱼鳔中气体含量,促使鱼体自由沉浮。 然而鱼类如此巧妙的沉浮系统,对于潜艇设计师的启发和帮助已经为时过迟了。 声音是人们生活中不可缺少的要素。 通过语言,人们交流思想和感情,优美的音乐使人们获得艺术的享受,工程技术人员还把声学系统应用在工业生产和军事技术中,成为颇为重要的信息之一。 自从潜水艇问世以来,随之而来的就是水面的舰船如何发现潜艇的位置以防偷袭;而潜艇沉入水中后,也须准确测定敌船方位和距离以利攻击。 因此,在第一次世界大战期间,在海洋上,水面与水中敌对双方的斗争采用了各种手段。 海军工程师们也利用声学系统作为一个重要的侦察手段。 首先采用的是水听器,也称噪声测向仪,通过听测敌舰航行中所发出的噪声来发现敌舰。 只要周围水域中有敌舰在航行,机器与螺旋桨推进器便发出噪声,通过水听器就能听到,能及时发现敌人。 但那时的水听器很不完善,一般只能收到本身舰只的噪声,要侦听敌舰,必须减慢舰只航行速度甚至完全停车才能分辨潜艇的噪音,这样很不利于战斗行动。 不久,法国科学家郎之万(1872~1946)研究成功利用超声波反射的性质来探测水下舰艇。 用一个超声波发生器,向水中发出超声波后,如果遇到目标便反射回来,由接收器收到。 根据接收回波的时间间隔和方位,便可测出目标的方位和距离,这就是所谓的声纳系统。 人造声纳系统的发明及在侦察敌方潜水艇方面获得的突出成果,曾使人们为之惊叹不已。 岂不知远在地球上出现人类之前,蝙蝠、海豚早已对“回声定位”声纳系统应用自如了。 生物在漫长的年代里就是生活在被声音包围的自然界中,它们利用声音寻食,逃避敌害和求偶繁殖。 因此,声音是生物赖以生存的一种重要信息。 意大利人斯帕兰赞尼很早以前就发现蝙蝠能在完全黑暗中任意飞行,既能躲避障碍物也能捕食在飞行中的昆虫,但是堵塞蝙蝠的双耳后,它们在黑暗中就寸步难行了。 面对这些事实,帕兰赞尼提出了一个使人们难以接受的结论:蝙蝠能用耳朵“看东西”。 第一次世界大战结束后,1920年哈台认为蝙蝠发出声音信号的频率超出人耳的听觉范围。 并提出蝙蝠对目标的定位方法与第一次世界大战时郎之万发明的用超声波回波定位的方法相同。 遗憾的是,哈台的提示并未引起人们的重视,而工程师们对于蝙蝠具有“回声定位”的技术是难以相信的。 直到1983年采用了电子测量器,才完完全全证实蝙蝠就是以发出超声波来定位的。 但是这对于早期雷达和声纳的发明已经不能有所帮助了。 另一个事例是人们对于昆虫行为为时过晚的研究。 在利奥那多·达·芬奇研究鸟类飞行造出第一个飞行器400年之后,人们经过长期反复的实践,终于在1903 年发明了飞机,使人类实现了飞上天空的梦想。 由于不断改进,30年后人们的飞机不论在速度、高度和飞行距离上都超过了鸟类,显示了人类的智慧和才能。 但是在继续研制飞行更快更高的飞机时,设计师又碰到了一个难题,就是气体动力学中的颤振现象。 当飞机飞行时,机翼发生有害的振动,飞行越快,机翼的颤振越强烈,甚至使机翼折断,造成飞机坠落,许多试飞的飞行员因而丧生。 飞机设计师们为此花费了巨大的精力研究消除有害的颤振现象,经过长时间的努力才找到解决这一难题的方法。 就在机翼前缘的远端上安放一个加重装置,这样就把有害的振动消除了。 可是,昆虫早在三亿年以前就飞翔在空中了,它们也毫不例外地受到颤振的危害,经过长期的进化,昆虫早已成功地获得防止颤振的方法。 生物学家在研究蜻蜓翅膀时,发现在每个翅膀前缘的上方都有一块深色的角质加厚区——翼眼或称翅痣。 如果把翼眼去掉,飞行就变得荡来荡去。 实验证明正是翼眼的角质组织使蜻蜓飞行的翅膀消除了颤振的危害,这与设计师高超的发明何等相似。 假如设计师们先向昆虫学习翼眼的功用,获得有益于解决颤振的设计思想,就可似避免长期的探索和人员的牺牲了。 面对蜻蜓翅膀的翼眼,飞机设计师大有相见恨晚之感! 以上这三个事例发人深省,也使人们受到了很大启发。 早在地球上出现人类之前,各种生物已在大自然中生活了亿万年,在它们为生存而斗争的长期进化中,获得了与大自然相适应的能力。 生物学的研究可以说明,生物在进化过程中形成的极其精确和完善的机制,使它们具备了适应内外环境变化的能力。 生物界具有许多卓有成效的本领。 如体内的生物合成、能量转换、信息的接受和传递、对外界的识别、导航、定向计算和综合等,显示出许多机器所不可比拟的优越之处。 生物的小巧、灵敏、快速、高效、可靠和抗干扰性实在令人惊叹不已。 【连接生物与技术的桥梁】 自从瓦特(James Watt,1736~1819)在1782年发明蒸汽机以后,人们在生产斗争中获得了强大的动力。 在工业技术方面基本上解决了能量的转换、控制和利用等问题,从而引起了第一次工业革命,各式各样的机器如雨后春笋般的出现,工业技术的发展极大地扩大和增强了人的体能,使人们从繁重的体力劳动解脱出来。 随着技术的发展,人们在蒸汽机以后又经历了电气时代并向自动化时代迈进。 20世纪40年代电子计算机的问世,更是给人类科学技术的宝库增添了可贵的财富,它以可靠和高效的本领处理着人们手头上数以万计的各种信息,使人们从汪洋大海般的数字、信息中解放出来,使用计算机和自动装置可以使人们在繁杂的生产工序面前变得轻松省力,它们准确地调整、控制着生产程序,使产品规格精确。 但是,自动控制装置是按人们制定的固定程序进行工作的,这就使它的控制能力具有很大的局限性。 自动装置对外界缺乏分析和进行灵活反应的能力,如果发生任何意外的情况,自动装置就要停止工作,甚至发生意外事故,这就是自动装置本身所具有的严重缺点。 要克服这种缺点,无非是使机器各部件之间,机器与环境之间能够“通讯”,也就是使自动控制装置具有适应内外环境变化的能力。 要解决这一难题,在工程技术中就要解决如何接受、转换。 利用和控制信息的问题。 因此,信息的利用和控制就成为工业技术发展的一个主要矛盾。 如何解决这个矛盾呢?生物界给人类提供了有益的启示。 人类要从生物系统中获得启示,首先需要研究生物和技术装置是否存在着共同的特性。 1940年出现的调节理论,将生物与机器在一般意义上进行对比。 到 1944年,一些科学家已经明确了机器和生物体内的通讯、自动控制与统计力学等一系列的问题上都是一致的。 在这样的认识基础上,1947年,一个新的学科 ——控制论产生了。 控制论(Cybernetics)是从希腊文而来,原意是“掌舵人”。 按照控制论的创始人之一维纳(Norbef Wiener,1894~1964)给予控制论的定义是“关于在动物和机器中控制和通讯”的科学。 虽然这个定义过于简单,仅仅是维纳关于控制论经典著作的副题,但它直截了当地把人们对生物和机器的认识联系在了一起。 控制论的基本观点认为,动物(尤其是人)与机器(包括各种通讯、控制、计算的自动化装置)之间有一定的共体,也就是在它们具备的控制系统内有某些共同的规律。 根据控制论研究表明,各种控制系统的控制过程都包含有信息的传递、变换与加工过程。 控制系统工作的正常,取决于信息运行过程的正常。 所谓控制系统是指由被控制的对象及各种控制元件、部件、线路有机地结合成有一定控制功能的整体。 从信息的观点来看,控制系统就是一部信息通道的网络或体系。 机器与生物体内的控制系统有许多共同之处,于是人们对生物自动系统产生了极大的兴趣,并且采用物理学的、数学的甚至是技术的模型对生物系统开展进一步的研究。 因此,控制理论成为联系生物学与工程技术的理论基础。 成为沟通生物系统与技术系统的桥梁。 生物体和机器之间确实有很明显的相似之处,这些相似之处可以表现在对生物体研究的不同水平上。 由简单的单细胞到复杂的器官系统(如神经系统)都存在着各种调节和自动控制的生理过程。 我们可以把生物体看成是一种具有特殊能力的机器,和其它机器的不同就在于生物体还有适应外界环境和自我繁殖的能力。 也可以把生物体比作一个自动化的工厂,它的各项功能都遵循着力学的定律;它的各种结构协调地进行工作;它们能对一定的信号和刺激作出定量的反应,而且能像自动控制一样,借助于专门的反馈联系组织以自我控制的方式进行自我调节。 例如我们身体内恒定的体温、正常的血压、正常的血糖浓度等都是肌体内复杂的自控制系统进行调节的结果。 控制论的产生和发展,为生物系统与技术系统的连接架起了桥梁,使许多工程人员自觉地向生物系统去寻求新的设计思想和原理。 于是出现了这样一个趋势,工程师为了和生物学家在共同合作的工程技术领域中获得成果,就主动学习生物科学知识。 【仿生学的诞生】 随着生产的需要和科学技术的发展,从20世纪50年代以来,人们已经认识到生物系统是开辟新技术的主要途径之一,自觉地把生物界作为各种技术思想、设计原理和创造发明的源泉。 人们用化学、物理学、数学以及技术模型对生物系统开展着深入的研究,促进了生物学的极大发展,对生物体内功能机理的研究也取得了迅速的进展。 此时模拟生物不再是引人入胜的幻想,而成了可以做到的事实。 生物学家和工程师们积极合作,开始将从生物界获得的知识用来改善旧的或创造新的工程技术设备。 生物学开始跨入各行各业技术革新和技术革命的行列,而且首先在自动控制、航空、航海等军事部门取得了成功。 于是生物学和工程技术学科结合在一起,互相渗透孕育出一门新生的科学——仿生学。 作为一门独立的学科,仿生学正式诞生于1960年9月。 由美国空军航空局在俄亥俄州的空军基地戴通召开了第一次仿生学会议。 会议讨论的中心议题是“分析生物系统所得到的概念能够用到人工制造的信息加工系统的设计上去吗?”斯梯尔为新兴的科学命名为“Bionics”,希腊文的意思代表着研究生命系统功能的科学,1963年我国将“Bionics”译为“仿生学”。 斯梯尔把仿生学定义为“模仿生物原理来建造技术系统,或者使人造技术系统具有或类似于生物特征的科学”。 简言之,仿生学就是模仿生物的科学。 确切地说,仿生学是研究生物系统的结构、特质、功能、能量转换、信息控制等各种优异的特征,并把它们应用到技术系统,改善已有的技术工程设备,并创造出新的工艺过程、建筑构型、自动化装置等技术系统的综合性科学。 从生物学的角度来说,仿生学属于“应用生物学” 的一个分支;从工程技术方面来看,仿生学根据对生物系统的研究,为设计和建造新的技术设备提供了新原理、新方法和新途径。 仿生学的光荣使命就是为人类提供最可靠、最灵活、最高效、最经济的接近于生物系统的技术系统,为人类造福。 【仿生学的研究方法与内容】 仿生学是生物学、数学和工程技术学相互渗透而结合成的一门新兴的边缘科学。 第一届仿生学会议为仿生学确定了一个有趣而形象的标志:一个巨大的积分符号,把解剖刀和电烙铁“积分”在一起。 这个符号的含义不仅显示出仿生学的组成,而且也概括表达了仿生学的研究途径。 仿生学的任务就是要研究生物系统的优异能力及产生的原理,并把它模式化,然后应用这些原理去设计和制造新的技术设备。 仿生学的主要研究方法就是提出模型,进行模拟。 其研究程序大致有以下三个阶段: 首先是对生物原型的研究。 根据生产实际提出的具体课题,将研究所得的生物资料予以简化,吸收对技术要求有益的内容,取消与生产技术要求无关的因素,得到一个生物模型;第二阶段是将生物模型提供的资料进行数学分析,并使其内在的联系抽象化,用数学的语言把生物模型“翻译”成具有一定意义的数学模型;最后数学模型制造出可在工程技术上进行实验的实物模型。 当然在生物的模拟过程中,不仅仅是简单的仿生,更重要的是在仿生中有创新。 经过实践——认识——再实践的多次重复,才能使模拟出来的东西越来越符合生产的需要。 这样模拟的结果,使最终建成的机器设备将与生物原型不同,在某些方面甚上超过生物原型的能力。 例如今天的飞机在许多方面都超过了鸟类的飞行能力,电子计算机在复杂的计算中要比人的计算能力迅速而可靠。 仿生学的基本研究方法使它在生物学的研究中表现出一个突出的特点,就是整体性。 从仿生学的整体来看,它把生物看成是一个能与内外环境进行联系和控制的复杂系统。 它的任务就是研究复杂系统内各部分之间的相互关系以及整个系统的行为和状态。 生物最基本的特征就是生物的自我更新和自我复制,它们与外界的联系是密不可分的。 生物从环境中获得物质和能量,才能进行生长和繁殖;生物从环境中接受信息,不断地调整和综合,才能适应和进化。 长期的进化过程使生物获得结构和功能的统一,局部与整体的协调与统一。 仿生学要研究生物体与外界刺激(输入信息)之间的定量关系,即着重于数量关系的统一性,才能进行模拟。 为达到此目的,采用任何局部的方法都不能获得满意的效果。 因此,仿生学的研究方法必须着重于整体。 仿生学的研究内容是极其丰富多彩的,因为生物界本身就包含着成千上万的种类,它们具有各种优异的结构和功能供各行业来研究。 自从仿生学问世以来的二十几年内,仿生学的研究得到迅速的发展,且取得了很大的成果。 就其研究范围可包括电子仿生、机械仿生、建筑仿生、化学仿生等。 随着现代工程技术的发展,学科分支繁多,在仿生学中相应地开展对口的技术仿生研究。 例如:航海部门对水生动物运动的流体力学的研究;航空部门对鸟类、昆虫飞行的模拟、动物的定位与导航;工程建筑对生物力学的模拟;无线电技术部门对于人神经细胞、感觉器宫和神经网络的模拟;计算机技术对于脑的模拟似及人工智能的研究等。 在第一届仿生学会议上发表的比较典型的课题有:“人造神经元有什么特点”、“设计生物计算机中的问题”、“用机器识别图像”、“学习的机器”等。 从中可以看出以电子仿生的研究比较广泛。 仿生学的研究课题多集中在以下三种生物原型的研究,即动物的感觉器官、神经元、神经系统的整体作用。 以后在机械仿生和化学仿生方面的研究也随之开展起来,近些年又出现新的分支,如人体的仿生学、分子仿生学和宇宙仿生学等。 总之,仿生学的研究内容,从模拟微观世界的分子仿生学到宏观的宇宙仿生学包括了更为广泛的内容。 而当今的科学技术正是处于一个各种自然科学高度综合和互相交叉、渗透的新时代,仿生学通过模拟的方法把对生命的研究和实践结合起来,同时对生物学的发展也起了极大的促进作用。 在其它学科的渗透和影响下,使生物科学的研究在方法上发生了根本的转变;在内容上也从描述和分析的水平向着精确和定量的方向深化。 生物科学的发展又是以仿生学为渠道向各种自然科学和技术科学输送宝贵的资料和丰富的营养,加速科学的发展。 闪此,仿生学的科研显示出无穷的生命力,它的发展和成就将为促进世界整体科学技术的发展做出巨大的贡献。 【仿生学的研究范围】 仿生学的研究范围主要包括:力学仿生、分子仿生、能量仿生、信息与控制仿生等。 ◇力学仿生,是研究并模仿生物体大体结构与精细结构的静力学性质,以及生物体各组成部分在体内相对运动和生物体在环境中运动的动力学性质。 例如,建筑上模仿贝壳修造的大跨度薄壳建筑,模仿股骨结构建造的立柱,既消除应力特别集中的区域,又可用最少的建材承受最大的载荷。 军事上模仿海豚皮肤的沟槽结构,把人工海豚皮包敷在船舰外壳上,可减少航行揣流,提高航速; ◇分子仿生,是研究与模拟生物体中酶的催化作用、生物膜的选择性、通透性、生物大分子或其类似物的分析和合成等。 例如,在搞清森林害虫舞毒蛾性引诱激素的化学结构后,合成了一种类似有机化合物,在田间捕虫笼中用千万分之一微克,便可诱杀雄虫; ◇能量仿生,是研究与模仿生物电器官生物发光、肌肉直接把化学能转换成机械能等生物体中的能量转换过程; ◇信息与控制仿生,是研究与模拟感觉器官、神经元与神经网络、以及高级中枢的智能活动等方面生物体中的信息处理过程。 例如,根据象鼻虫视动反应制成的“自相关测速仪”可测定飞机着陆速度。 根据鲎复眼视网膜侧抑制网络的工作原理,研制成功可增强图像轮廓、提高反差、从而有助于模糊目标检测的—些装置。 已建立的神经元模型达100种以上,并在此基础上构造出新型计算机。 模仿人类学习过程,制造出一种称为“感知机”的机器,它可以通过训练,改变元件之间联系的权重来进行学习,从而能实现模式识别。 此外,它还研究与模拟体内稳态,运动控制、动物的定向与导航等生物系统中的控制机制,以及人-机系统的仿生学方面。 某些文献中,把分子仿生与能量仿生的部分内容称为化学仿生,而把信息和控制仿生的部分内容称为神经仿生。 仿生学的范围很广,信息与控制仿生是一个主要领域。 一方面由于自动化向智能控制发展的需要,另一方面是由于生物科学已发展到这样一个阶段,使研究大脑已成为对神经科学最大的挑战。 人工智能和智能机器人研究的仿生学方面——生物模式识别的研究,大脑学习记忆和思维过程的研究与模拟,生物体中控制的可靠性和协调问题等——是仿生学研究的主攻方面。 控制与信息仿生和生物控制论关系密切。 两者都研究生物系统中的控制和信息过程,都运用生物系统的模型。 但前者的目的主要是构造实用人造硬件系统;而生物控制论则从控制论的一般原理,从技术科学的理论出发,为生物行为寻求解释。 最广泛地运用类比、模拟和模型方法是仿生学研究方法的突出特点。 其目的不在于直接复制每一个,而是要理解生物系统的工作原理,以实现特定功能为中心目的。 —般认为,在仿生学研究中存在下列三个相关的方面:生物原型、数学模型和硬件模型。 前者是基础,后者是目的,而数学模型则是两者之间必不可少的桥梁。 由于生物系统的复杂性,搞清某种生物系统的机制需要相当长的研究周期,而且解决实际问题需要多学科长时间的密切协作,这是限制仿生学发展速度的主要原因。

有没有一个快速实现梦想的方法

为什么梦想总会变成幻想?因为你只是“想”没有“行动”。 只是想而不行动,就是白日梦,空想罢了。 任何梦想,都需要长期稳定地投资时间,金钱,精力,一切。 所有的花都不是一日就绽放的,所有的树也不是一天就长高的。 那些看起来一下子就成功的人,势必之前有过一段默默无闻的积累的时间,只是没有告诉你罢了。 有一种竹子,据说6个月就可以长很高很高,但是没有人知道,它在破土之前,扎根就扎了5年。

梦想说大不大,说小不小。 但是需要持久的努力,罗马不是一天建成的。 任何一个梦想,都会退却最初的激情时段,之后就需要靠习惯,长年累月的坚持,从地基开始打造自己的梦之堡垒。 如果不付出持续的努力,梦想就只是一座空中楼阁,海市蜃楼罢了。 如果不想让梦想变成泡影,就应该设定目标,长远的和近期的;还应该把目标细分,具体到每一天每一月每一年,然后完成一个小目标就划掉,借此累积成就感。 长的目标太远,人很难坚持,但是一细化目标,只完成当天的任务,就简单的多。 就像开车,你的车灯不能照亮全世界,只能照亮你车前的那一块,但是就是这样走下去,也一样可以在黑暗中摸索着走很远很远,当到达目的地的时候,可能连你自己都不会相信,居然已经到了!

就像那句著名的广告词,just do it!别管那么多,也别问那么多,做就好!路在脚下,要你自己去走。

本文原创来源:电气TV网,欢迎收藏本网址,收藏不迷路哦!

相关阅读

添加新评论